There is now considerable evidence of the importance of mechanical cues in neuronal development and regeneration. Motivated by the difference in the mechanical properties of the tissue environment between the peripheral (PNS) and central (CNS) nervous systems, we compare substrate-stiffness-dependent outgrowth and traction forces from PNS (dorsal root ganglion (DRG)) and CNS (hippocampal) neurons. We show that neurites from DRG neurons display maximal outgrowth on substrates with a Young's modulus of ∼1000 Pa, whereas hippocampal neurite outgrowth is independent of substrate stiffness. Using traction force microscopy, we also find a substantial difference in growth cone traction force generation, with DRG growth cones exerting severalfold larger forces compared with hippocampal growth cones. The traction forces generated by DRG and hippocampal growth cones both increase with increasing stiffness, and DRG growth cones growing on substrates with a Young's modulus of 1000 Pa strengthen considerably after 18-30 h. Finally, we find that retrograde actin flow is almost three times faster in hippocampal growth cones than in DRG. Moreover, the density of paxillin puncta is significantly lower in hippocampal growth cones, suggesting that stronger substrate coupling of the DRG cytoskeleton is responsible for the remarkable difference in traction force generation. These findings reveal a differential adaptation of cytoskeletal dynamics to substrate stiffness in growth cones of different neuronal types, and highlight the potential importance of the mechanical properties of the cellular environment for neuronal navigation during embryonic development and nerve regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274825PMC
http://dx.doi.org/10.1016/j.bpj.2011.12.025DOI Listing

Publication Analysis

Top Keywords

growth cones
28
hippocampal growth
16
traction force
12
growth
9
growth cone
8
mechanical properties
8
traction forces
8
substrates young's
8
young's modulus
8
substrate stiffness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!