A coincidence detector triggers botulinum neurotoxin translocation.

Future Microbiol

Department of Chemistry & Worm Institute of Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Published: February 2012

Botulinum neurotoxins (BoNTs) are the deadliest poisons known to man. They possess a particular duality, rapidly increasing clinical utility for a wide range of disorders and large concern as a possible weapon of bioterrorism. While great strides have been made in the structural and biochemical understanding of the mechanism of intoxication, the specific molecular details behind BoNT translocation out of endosomes remain elusive. In this study, it was conclusively demonstrated that light chain metalloprotease translocation can only occur in the presence of low pH, as is found in endosomes, and GT1b ganglioside coreceptor, whose role was previously thought to only be in cell surface recognition by the toxin. As stated by the authors, the BoNT receptor-binding domain therefore serves as a 'coincidence receptor' in that pH sensing and conformational change to a translocation competent form must be coupled in some way to receptor binding. Further study using atomic force microscopy also suggested the presence of oligomeric toxin channels that can be inhibited by the natural product toosendanin. This data revises the model of BoNT intoxication and demonstrates a mechanism for the amazing temporal and spatial control possessed by this toxin, which ultimately manifests in its extreme potency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637022PMC
http://dx.doi.org/10.2217/fmb.11.157DOI Listing

Publication Analysis

Top Keywords

coincidence detector
4
detector triggers
4
triggers botulinum
4
botulinum neurotoxin
4
translocation
4
neurotoxin translocation
4
translocation botulinum
4
botulinum neurotoxins
4
neurotoxins bonts
4
bonts deadliest
4

Similar Publications

Using Recombinase-Aid Amplification Combined with Argonaute for Rapid Sex Identification in Flamingo ().

Animals (Basel)

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Flamingos () are among the oldest birds worldwide and are loved by people for their bright red feathers. In addition, flamingos are sexually monomorphic birds, and distinguishing between males and females is difficult. The polymerase chain reaction (PCR) is widely used for sex identification.

View Article and Find Full Text PDF

Preparation and application of porcine broadly neutralizing monoclonal antibodies in an immunoassay for efficiently detecting neutralizing antibodies against foot-and-mouth disease virus serotype O.

Microbiol Spectr

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Neutralizing antibodies provide vital protection against foot-and-mouth disease virus (FMDV). The virus neutralization test (VNT) is a gold standard method for the detection of neutralizing antibodies. However, its application is limited due to the requirement for live virus and unsuitability for large-scale serological surveillance.

View Article and Find Full Text PDF

Time resolution is crucial in positron emission tomography (PET) to enhance the signal-to-noise ratio and image quality. Moreover, high sensitivity requires long scintillators, which can cause distortions in the reconstructed images due to parallax effects. This study evaluates the performance of a time-of-flight (TOF)-PET module that makes use of a single-side readout of a 4x4 3.

View Article and Find Full Text PDF

Background: Assessing the performance of spectral detectors is an important but nontrivial problem. In the past few years, detective quantum efficiency-(DQE)-like quantities have been proposed that allow quantifying the spatial-spectral performance for certain tasks. In previous publications, we have presented and validated an approach to determine detector properties like the modulation transfer function (MTF), the noise power spectrum (NPS), and the DQE based on an end-to-end Monte Carlo model of the detection process.

View Article and Find Full Text PDF

Purpose: We have developed a forceps-type coincidence radiation detector for supporting lymph node dissection in esophageal cancer treatment. For precise detecting, this study aims to measure the 2D point-spread function of the detector at three difference tip angles, to devise a method to determine the position of a point source using the 2D point-spread function.

Method: The 2D sensitivity distribution on the surface of the detector was investigated to assess sensitivity variation caused by differences in the relative positions of the detector and radiation source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!