Collective excitations of water confined in the interlayer space of swelling clay minerals were studied by means of inelastic neutron scattering. The effect of bidimensional confinement on the dynamics of the interlayer water was investigated by using a synthetic Na-saponite sample with a general formula of Si(7.3)Al(0.7)Mg(6)O(20)(OH)(4)Na(0.7) in a bilayer hydration state. Experimental results reveal two inelastic signals, different from those described for bulk water with a clear anisotropy on the low-energy excitation of the collective dynamics of interlayer water, this difference being stronger in the perpendicular direction. Results obtained for the parallel direction follow the same trend as bulk water, and the effect of the confinement is mainly manifested from the fact that clay interlayer water is more structured than bulk water. Data obtained in the perpendicular direction display a nondispersive behavior below a cutoff wavenumber value, Q(c), indicating a nonpropagative excitation below that value. Molecular dynamics simulations results agree qualitatively with the experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp201543t | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China.
The aqueous iron ion batteries (AIIBs) are an attractive option for large-scale energy storage applications. However, the inadequate plating and stripping of Fe ions underscore the need to explore more suitable cathode materials. Herein, we optimize the structure of tunnel-like VO nanosheets by introducing Mn ion intercalation as a cathode material to enhance their performance in AIIBs.
View Article and Find Full Text PDFTight sandstone gas reservoirs are characterized by high water saturation, significant seepage resistance, low single-well productivity, rapid decline, and low gas recovery. Enhancing the recovery rate of tight sandstone gas reservoirs is a complex engineering challenge that necessitates thorough, refined, and systematic research into its fundamental theories. This study employs a comprehensive approach integrating mercury injection, nuclear magnetic resonance, micro-model visualization, and simulation experiments of displacement and inter-layer seepage flow, alongside foundational seepage theories, to systematically explore the characteristics of tight sandstone gas reservoirs, seepage patterns, and methods for improving gas recovery.
View Article and Find Full Text PDFHeliyon
January 2025
Sharif Institute of Energy, Water and Environment, Sharif University of Technology, Azadi Avenue, P.O.Box11365-9465, Tehran, Iran.
Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:
High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!