Readily prepared and bench-stable rhodium complexes containing methylene bridged diphosphine ligands, viz. [Rh(C(6)H(5)F)(R(2)PCH(2)PR'(2))][BAr(F)(4)] (R, R' = (t)Bu or Cy; Ar(F) = C(6)H(3)-3,5-(CF(3))(2)), are shown to be practical and very efficient precatalysts for the intermolecular hydroacylation of a wide variety of unactivated alkenes and alkynes with β-S-substituted aldehydes. Intermediate acyl hydride complexes [Rh((t)Bu(2)PCH(2)P(t)Bu(2))H{κ(2)(S,C)-SMe(C(6)H(4)CO)}(L)](+) (L = acetone, MeCN, [NCCH(2)BF(3)](-)) and the decarbonylation product [Rh((t)Bu(2)PCH(2)P(t)Bu(2))(CO)(SMePh)](+) have been characterized in solution and by X-ray crystallography from stoichiometric reactions employing 2-(methylthio)benzaldehdye. Analogous complexes with the phosphine 2-(diphenylphosphino)benzaldehyde are also reported. Studies indicate that through judicious choice of solvent and catalyst/substrate concentration, both decarbonylation and productive hydroacylation can be tuned to such an extent that very low catalyst loadings (0.1 mol %) and turnover frequencies of greater than 300 h(-1) can be achieved. The mechanism of catalysis has been further probed by KIE and deuterium labeling experiments. Combined with the stoichiometric studies, a mechanism is proposed in which both oxidative addition of the aldehyde to give an acyl hydride and insertion of the hydride into the alkene are reversible, with the latter occurring to give both linear and branched alkyl intermediates, although reductive elimination for the linear isomer is suggested to have a considerably lower barrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja211649a | DOI Listing |
Chemistry
August 2023
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
A quadruple N-heterocyclic carbene/cobalt/photoredox/Brønsted base catalysis to realize branch-selective hydroacylation of styrenes with aromatic and aliphatic aldehydes is demonstrated. This protocol allows access to branched ketones from readily available materials in an atom-economical manner. The quadruple catalysis can transfer a formyl hydrogen of aldehydes as a hydrogen radical equivalent onto the terminal carbon of an alkene by controlled electron and proton transfers.
View Article and Find Full Text PDFChem Sci
October 2021
Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
Heterocycle-derived aldehydes are challenging substrates in metal-catalysed hydroacylation chemistry. We show that by using azine N-oxide substituted aldehydes, good reactivity can be achieved, and that they are highly effective substrates for the intermolecular hydroacylation of alkynes. Employing a Rh(i)-catalyst, we achieve a mild and scalable aldehyde C-H activation, that permits the coupling with unactivated terminal alkynes, in good yields and with high regioselectivities (up to >20 : 1 l:b).
View Article and Find Full Text PDFACS Catal
May 2021
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
We demonstrate that aryltriazenes can promote three distinctive types of C-H functionalization reactions, allowing the preparation of complex benzene molecules with diverse substitution patterns. 2-Triazenylbenzaldehydes are shown to be efficient substrates for Rh(I)-catalyzed intermolecular alkyne hydroacylation reactions. The resulting triazene-substituted ketone products can then undergo either a Rh(III)-catalyzed C-H activation, or an electrophilic aromatic substitution reaction, achieving multifunctionalization of the benzene core.
View Article and Find Full Text PDFJ Am Chem Soc
April 2021
School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China.
Acylphosphonates having the 5,5-dimethyl-1,3,2-dioxophosphinanyl skeleton are developed as efficient intermolecular radical acylation reagents, which enable the cobalt-catalyzed Markovnikov hydroacylation of unactivated alkenes at room temperature under mild conditions. The protocol exhibits broad substrate scope and wide functional group compatibility, providing branched ketones in satisfactory yields. A mechanism involving the Co-H mediated hydrogen atom transfer and subsequent trapping of alkyl radicals by acylphosphonates is proposed.
View Article and Find Full Text PDFAcc Chem Res
March 2021
Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.
By using transition metal catalysts, chemists have altered the "logic of chemical synthesis" by enabling the functionalization of carbon-hydrogen bonds, which have traditionally been considered inert. Within this framework, our laboratory has been fascinated by the potential for aldehyde C-H bond activation. Our approach focused on generating acyl-metal-hydrides by oxidative addition of the formyl C-H bond, which is an elementary step first validated by Tsuji in 1965.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!