Purpose: Macrophage migration inhibitory factor (MIF) may serve as a general marker for systemic inflammation in septic and nonseptic acute critical illness. Additionally, our previous experiment has demonstrated that immunosuppressant Prostaglandin E(2) (PGE(2)) lowered MIF levels and inhibited T-cells proliferation when compared to control levels. The addition of hypertonic saline (HTS) increased MIF production as compared with PGE(2)-stimulated T-cells in concordance with restore PGE(2)-suppressed T-cells proliferation. Generally, HTS has been well known for its anti-inflammatory effect so far. Therefore, the experiments were conducted to evaluate MIF after stimulating lipopolysaccharide (LPS) either in the presence or absence of HTS in monocyte, in response to early phase injury.

Methods: Human acute monocytic leukemic cell line (THP-1) cells were cultured in RPMI media, to a final concentration of 1 × 10(6) cells/mL. The effect of HTS on LPS-induced MIF was evaluated in monocyte with 1 µg/mL LPS. HTS at 10, 20 or 40 mmol/L above isotonicity was added. MIF concentrations of the supernatant were determined by enzyme-linked immunosorbent assay, and cell lysates were used for Western blots analysis to determine the MIF expression.

Results: MIF concentrations in the cell supernatant increased in LPS-induced cells compared to control cells. Also, levels of MIF protein expression were higher in LPS stimulating cells. However, the addition of HTS to LPS stimulated cell restored MIF concentrations and MIF expression.

Conclusion: The role of HTS in maintaining physiological balance in human beings, at least in part, should be mediated through the MIF pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268137PMC
http://dx.doi.org/10.4174/jkss.2012.82.1.1DOI Listing

Publication Analysis

Top Keywords

mif
12
mif concentrations
12
hypertonic saline
8
migration inhibitory
8
inhibitory factor
8
thp-1 cells
8
t-cells proliferation
8
compared control
8
hts
7
cells
5

Similar Publications

Background: The Beclin-1/Bcl-2 complex plays a pivotal role in regulating both autophagy and apoptosis in osteoblasts affected by osteoporosis. This study first investigates whether the Bushen Jianpi Huoxue Formula can enhance the cellular function of osteoblasts. Additionally, it initially explores the functional mechanism of Beclin-1/Bcl-2-related apoptosis.

View Article and Find Full Text PDF

Dysregulated mitophagy is essential for mitochondrial quality control within human cancers. However, identifying hub genes regulating mitophagy and developing mitophagy-based treatments to combat drug resistance remains challenging. Herein, BayeDEM (Bayesian-optimized Deep learning for identifying Essential genes of Mitophagy) was proposed for such a task.

View Article and Find Full Text PDF

Physiological and multi-omics analysis revealed the mechanism of arbuscular mycorrhizal fungi to cadmium toxicity in green onion.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Cadmium (Cd) is a highly toxic agricultural pollutant that inhibits the growth and development of plants. Arbuscular mycorrhizal fungi (AMF) can enhance plant tolerance to Cd, but the regulatory mechanisms in Allium fistulosum (green onion) are unclear. This study used a Cd treatment concentration of 1.

View Article and Find Full Text PDF

Previous research suggests mitochondrial apoptosis alleviates rheumatoid arthritis (RA), but the role of mitochondrial apoptosis-related genes (MARGs) is unclear. Urgent exploration of RA-related mitochondrial apoptosis biomarkers is needed. Gene Expression Ontology (GEO)-derived RA datasets were used to identify differentially expressed genes (DEGs) compared to normal controls, intersected with MARGs to obtain differentially expressed mitochondrial apoptosis-related genes (DE-MARGs).

View Article and Find Full Text PDF

Advanced tissue technologies of blood-brain barrier organoids as high throughput toxicity readouts in drug development.

Heliyon

January 2025

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.

Recent advancements in engineering Complex models (CIVMs) such as Blood-brain barrier (BBB) organoids offer promising platforms for preclinical drug testing. However, their application in drug development, and especially for the regulatory purposes of toxicity assessment, requires robust and reproducible techniques. Here, we developed an adapted set of orthogonal image-based tissue methods including hematoxylin and eosin staining (HE), immunohistochemistry (IHC), multiplex immunofluorescence (mIF), and Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to validate CIVMs for drug toxicity assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!