The aim of this study was to assess the prevalence of diabetes and to study the effects of excess growth hormone (GH) on insulin sensitivity and β-cell function in Korean acromegalic patients. One hundred and eighty-four acromegalic patients were analyzed to assess the prevalence of diabetes, and 52 naïve acromegalic patients were enrolled in order to analyze insulin sensitivity and insulin secretion. Patients underwent a 75 g oral glucose tolerance test with measurements of GH, glucose, insulin, and C-peptide levels. The insulin sensitivity index and β-cell function index were calculated and compared according to glucose status. Changes in the insulin sensitivity index and β-cell function index were evaluated one to two months after surgery. Of the 184 patients, 17.4% were in the normal glucose tolerance (NGT) group, 45.1% were in the pre-diabetic group and 37.5% were in the diabetic group. The insulin sensitivity index (ISI(0,120)) was significantly higher and the HOMA-IR was lower in the NGT compared to the diabetic group (P = 0.001 and P = 0.037, respectively). The ISI(0,120) and disposition index were significantly improved after tumor resection. Our findings suggest that both insulin sensitivity and β-cell function are improved by tumor resection in acromegalic patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271291PMC
http://dx.doi.org/10.3346/jkms.2012.27.2.177DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
24
acromegalic patients
20
sensitivity β-cell
16
β-cell function
16
insulin
9
excess growth
8
growth hormone
8
korean acromegalic
8
assess prevalence
8
prevalence diabetes
8

Similar Publications

Background: Obesity is a chronic disease associated with other associated medical problems, including atherogenic dyslipidemia. Metabolic bariatric surgery (MBS) has been shown to reduce long-term cardiovascular risk (CVR). Anti-ApoA-1 antibodies (AAA1) are independently associated with cardiovascular disease, which remains a major cause of death in individuals with obesity.

View Article and Find Full Text PDF

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).

View Article and Find Full Text PDF

Background: Biological sex influences Alzheimer's disease (AD) development, particularly concerning brain insulin resistance (bIR) and early energy metabolism defects. Biliverdin reductase-A (BVR-A) plays a crucial role in insulin signaling, and its downregulation leads to bIR. However, the sex-related differences in AD neuropathology and underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Diabetes is a modifiable risk factor for Alzheimer's disease, and GLUT4, an insulin-dependent transporter, plays a crucial role in insulin-resistant conditions and, consequently, in diabetes development. The study aimed to investigate the relationship between tau pathology and insulin resistance by quantifying GLUT4 expression and glucose concentration.

Method: Initially, SH-SY5Y cells underwent transfection with either a wild-type tau plasmid or a mutant tau plasmid.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Age-related decrease glucose utilization, coupled with insulin resistance, are key features of AD, resulting in reduced glucose utilization/catabolism and oxidative stress generation. Irisin, an exercise-induced hormone promoting mitochondrial biogenesis in adipocytes via PGC-1α, stimulates thermogenic pathways, increases energy expenditure and induces browning of adipose tissue. Further, irisin expression was shown to trigger neuroprotection in AD models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!