Objective: To investigate the role of SMN1 and SMN2 copy number variation and point mutations in amyotrophic lateral sclerosis (ALS) pathogenesis in a large population.
Methods: We conducted a genetic association study including 847 patients with ALS and 984 controls. We used multiplexed ligation-dependent probe amplification (MLPA) assays to determine SMN1 and SMN2 copy numbers and examined effects on disease susceptibility and disease course. Furthermore, we sequenced SMN genes to determine if SMN mutations were more prevalent in patients with ALS. A meta-analysis was performed with results from previous studies.
Results: SMN1 duplications were associated with ALS susceptibility (odds ratio [OR] 2.07, 95% confidence interval [CI] 1.34-3.20, p = 0.001). A meta-analysis with previous data including 3,469 individuals showed a similar effect: OR 1.85, 95% CI 1.18-2.90, p = 0.008). SMN1 deletions and SMN2 copy number status were not associated with ALS. SMN1 or SMN2 copy number variants had no effect on survival or the age at onset of the disease. We found no enrichment of SMN point mutations in patients with ALS.
Conclusions: Our data provide firm evidence for a role of common SMN1 duplications in ALS, and raise new questions regarding the disease mechanisms involved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304946 | PMC |
http://dx.doi.org/10.1212/WNL.0b013e318249f697 | DOI Listing |
Brain Dev
January 2025
Department of Pediatrics, Aichi Medical University School of Medicine, Nagakute, Japan.
Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.
View Article and Find Full Text PDFInt J Neonatal Screen
January 2025
Cellular, Molecular and Genomics Biomedicine Group, La Fe Health Research Institute, 46026 Valencia, Spain.
Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 () gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms are critical for improving health outcomes in affected individuals. We carried out a screening test by quantitative PCR (qPCR) to amplify the exon seven of using dried blood spot (DBS) samples.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China.
Objective: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by proximal muscle weakness and atrophy. The increasing availability of disease-modifying therapies has prompted the development of biomarkers to facilitate clinical assessments. We explored the association between disease severity and serum creatinine (Crn) levels in SMA patients undergoing up to two years of treatment with nusinersen.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
Introduction: Fatigue and gait speed are established determinants of fall risk in patients with neurological disorders. However, data on adults with spinal muscular atrophy (SMA) is limited. The aim of this pilot study was to investigate falls and risk factors in adults with SMA.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
JSC BIOCAD, St. Petersburg, Russia.
Spinal muscular atrophy (SMA) is a group of genetically heterogeneous neuromuscular diseases characterized by the progressive loss of motor neurons in the anterior horns of the spinal cord. The prevalence of SMA is approximately 1 in 10.000 live births.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!