In vivo features of signal transduction by the essential response regulator RpaB from Synechococcus elongatus PCC 7942.

Microbiology (Reading)

División de Genética, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain.

Published: May 2012

The NblS-RpaB signalling pathway, the most conserved two-component system in cyanobacteria, regulates photosynthesis and acclimatization to a variety of environmental conditions and is involved in negative regulation of high-light-induced genes. However, relevant regulatory details of the NblS-RpaB signalling pathway remain to be elucidated. We recently showed that the response regulator RpaB is regulated by specific (de)phosphorylation from the histidine kinase NblS and that RpaB and its phosphorylatable residue Asp56 are both required for viability of Synechococcus elongatus PCC 7942. We show here that the phosphorylated form of RpaB is present in cells growing under standard laboratory conditions and that high light stress affected the ratio of phosphorylated to non-phosphorylated RpaB. It also decreased the amount of rpaB transcripts without appreciably changing the total levels of RpaB. Quantitative Western blotting and confocal microscopy analyses were consistent with RpaB being a very abundant regulator, with nucleoid localization. A genetically engineered RpaB-GFP (green fluorescent protein) fusion protein rescued lethality of the rpaB null mutant, indicating that it was functional. This is, to our knowledge, the first study demonstrating in a cyanobacterium, and for a two-component response regulator, that the in vivo ratio of phosphorylated to non-phosphorylated protein changes in response to environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.057679-0DOI Listing

Publication Analysis

Top Keywords

response regulator
12
rpab
9
regulator rpab
8
synechococcus elongatus
8
elongatus pcc
8
pcc 7942
8
nbls-rpab signalling
8
signalling pathway
8
environmental conditions
8
ratio phosphorylated
8

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF

The role of genetic diversity, epigenetic regulation, and sex-based differences in HIV cure research: a comprehensive review.

Epigenetics Chromatin

January 2025

Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.

Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors.

View Article and Find Full Text PDF

Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!