Glucose recognition by a supramolecular complex of boronic acid fluorophore with boronic acid-modified cyclodextrin in water.

Anal Sci

Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102–8554, Japan.

Published: August 2012

A boronic acid fluorophore (C1-APB)/boronic acid-modified γ-cyclodextrin (3-PB-γ-CyD) complex as a supramolecular sensor has been designed for selective glucose recognition in water. The fluorescent response behavior of the C1-APB/3-PB-γ-CyD complex under various pH conditions revealed that a C1-APB/3-PB-γ-CyD complex solution containing glucose showed a large increase in the fluorescence intensity under alkaline pH conditions. In contrast, only small increases in the fluorescence intensity were noted for fructose and without sugar solutions. The observed response selectivity for the C1-APB/3-PB-γ-CyD complex was on the order of glucose >> galactose, mannose > fructose. The evidence on a large value of the inclusion constant (K(L·CyD) = 6.5 × 10(3) M(-1)), a marked broadening of the (1)H NMR spectra, and an enhancement of induced circular dichloism (ICD) intensity for the C1-APB/3-PB-γ-CyD complex by glucose binding supported the multi-point interaction of the C1-APB/3-PB-γ-CyD complex with glucose. These results demonstrated that the C1-APB/3-PB-γ-CyD complex functioned as an efficient supramolecular sensor for selective glucose recognition in water.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.28.121DOI Listing

Publication Analysis

Top Keywords

c1-apb/3-pb-γ-cyd complex
24
glucose recognition
12
complex
8
boronic acid
8
acid fluorophore
8
supramolecular sensor
8
selective glucose
8
recognition water
8
fluorescence intensity
8
complex glucose
8

Similar Publications

An inclusion complex consisting of a boronic acid fluorophore (C1-APB) and β-cyclodextrin (β-CyD) acts as a supramolecular sugar sensor whose response mechanism is based on photoinduced electron transfer (PET) from the excited pyrene to the boronic acid. We have investigated the PET process in C1-APB/CyD complexes by using time-resolved photoluminescence (TRPL) measurements at room temperature, and have succeeded in estimating the electron-transfer time to be about 1 ns. We have also studied the effects of CyDs on the PET process by comparing two kinds of CyDs (α-CyD, β-CyD) under different water-dimethyisulfoxide (DMSO) concentration conditions.

View Article and Find Full Text PDF

Glucose recognition by a supramolecular complex of boronic acid fluorophore with boronic acid-modified cyclodextrin in water.

Anal Sci

August 2012

Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102–8554, Japan.

A boronic acid fluorophore (C1-APB)/boronic acid-modified γ-cyclodextrin (3-PB-γ-CyD) complex as a supramolecular sensor has been designed for selective glucose recognition in water. The fluorescent response behavior of the C1-APB/3-PB-γ-CyD complex under various pH conditions revealed that a C1-APB/3-PB-γ-CyD complex solution containing glucose showed a large increase in the fluorescence intensity under alkaline pH conditions. In contrast, only small increases in the fluorescence intensity were noted for fructose and without sugar solutions.

View Article and Find Full Text PDF

An inclusion complex consisting of a fluorescent phenylboronic acid (C1-APB) and beta-cyclodextrin (beta-CD) acts as a supramolecular saccharide sensor whose response mechanism is based on photoinduced electron transfer (PET). This study evaluated four kinds of cyclodextrins (alpha-CD, beta-CD, gamma-CD, and NH(2)-beta-CD) by comparing their pH profiles, and confirmed that beta-CD was the best host for C1-APB because the C1-APB/beta-CD complex exhibited high affinity for saccharides as well as high fluorescent recovery upon saccharide binding. An investigation of the beta-CD concentration effect revealed the formation of a 1:1 inclusion complex of C1-APB with beta-CD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!