A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Control and mitigation of healthcare-acquired infections: designing clinical trials to evaluate new materials and technologies. | LitMetric

Hospitals clean environmental surfaces to lower microbial contamination and reduce the likelihood of transmitting infections. Despite current cleaning and hand hygiene protocols, hospital-acquired infections (HAIs) continue to result in a significant loss of life and cost the U.S. healthcare system an estimated $45 billion annually. Stainless steel and chrome are often selected for hospital touch surfaces for their "clean appearance," comparatively smooth finish, resistance to standard cleaners, and relative effectiveness for removing visible dirt during normal cleaning. Designers use wood surfaces for aesthetics; plastic surfaces have become increasingly endemic for their relative lower initial cost; and "antimicrobial agents" are being incorporated into a variety of surface finishes.This paper concentrates on environmental surface materials with a history of bactericidal control of infectious agents and focuses on the methods necessary to validate their effectiveness in healthcare situations. Research shows copper-based metals to have innate abilities to kill bacteria in laboratory settings, but their effectiveness in patient care environments has not been adequately investigated. This article presents a research methodology to expand the evidence base from the laboratory to the built environment. For such research to have a meaningful impact on the design/specifying community, it should assess typical levels of environmental pathogens (i.e., surface "cleanliness") as measured by microbial burden (MB); evaluate the extent to which an intervention with copper-based materials in a randomized clinical trial affects the level of contamination; and correlate how the levels of MB affect the incidence of infections acquired during hospital stays.

Download full-text PDF

Source
http://dx.doi.org/10.1177/193758671100500109DOI Listing

Publication Analysis

Top Keywords

control mitigation
4
mitigation healthcare-acquired
4
infections
4
healthcare-acquired infections
4
infections designing
4
designing clinical
4
clinical trials
4
trials evaluate
4
evaluate materials
4
materials technologies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!