Tin oxide nanosheets were crystallized on transparent conductive oxide substrates of fluorine-doped tin oxide in aqueous solutions. The nanosheets had chemical ratio of Sn:O:F = 1:1.85:0.076, suggesting fluorine doping into SnO(2). They were hydrophobic surfaces with contact angle of 140°. They were converted to hydrophilic surfaces with contact angle of below 1° by light irradiation. The simple water process will be applied to surface coating of polymers, metals, biomaterials, papers, etc. Furthermore, the tin oxide nanosheets were modified with dye-labeled monoclonal antibody. Monoclonal antibody reacts with human alpha-fetoprotein in blood serum of hepatocellular cancer patient. Photoluminescence and photocurrent were obtained from the nanosheets under excitation light. Photoelectric conversion was an essence in the sensing system. The tin oxide nanosheets with dye-labeled prostate specific antigen will be used for electrodes of prostate cancer sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am201811x | DOI Listing |
Nanomaterials (Basel)
December 2024
Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
A solution-gated indium-tin-oxide (ITO)-based field effect transistor (FET) without interfaces among the source, channel, and drain electrodes, which is called the one-piece ITO-FET, can be simply fabricated from a single sheet of ITO by etching the channel region. The direct contact of the ITO channel surface with a sample solution contributes to a steep subthreshold slope and a high on/off ratio. In this study, we have examined the effects of oxygen vacancies and hydroxy groups at the ITO channel surface on the electrical characteristics of the one-piece ITO-FET.
View Article and Find Full Text PDFTalanta
December 2024
Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs).
View Article and Find Full Text PDFACS Omega
December 2024
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
This study investigates whether 17β-estradiol (E2), a natural estrogen and one of the endocrine-disrupting chemicals responsible for water pollution, can be oxidatively decomposed under simulated solar light using a composite of tin oxide nanoparticles and graphene-like carbon nitride (g-CN) as a photocatalyst. The composite photocatalyst was prepared by heating a mixture of urea and tin acetate. FT-IR measurements revealed that g-CN possesses structural units similar to g-CN, a well-studied graphite-like carbon nitride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!