A new full-dimension potential energy surface of the three-body He-Rb₂(³Σ(u)(+)) complex and a quantum study of small (⁴He)(N)-Rb₂(³Σ(u)(+)) clusters, 1 ≤ N ≤ 4, are presented. We have accurately fitted the ab initio points of the interaction to an analytical form and addressed the dopant's vibration, which is found to be negligible. A Variational approach and a Diffusion Monte Carlo technique have been applied to yield energy and geometric properties of the selected species. Our quantum structure calculations show a transition in the arrangements of the helium atoms from N = 2, where they tend to be separated across the diatomic bond, to N = 4, in which a closer packing of the rare gas particles is reached, guided by the dominance of the He-He potential over the weaker interaction of the latter adatoms with the doping dimer. The deepest well of the He-Rb₂ interaction is placed at the T-shape configuration, a feature which causes the dopant to be located as parallel to the helium "minidroplet". Our results are shown to agree with previous findings on this and on similar systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp3004932 | DOI Listing |
Small
January 2025
Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.
Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
The design of solid-state materials requests a thorough understanding of the structural preferences among plausible structure models. Since the bond energy contributes to the formation energy of a given structure model, it also is decisive to determine the nature of chemical bonding for a given material. In this context, we were motivated to explore the correlation between chemical bonding and structural distortions within the low-dimensional tellurium fragments in TbCuTe.
View Article and Find Full Text PDFSmall
January 2025
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
The preparation and modification of porous electrodes are an important component of the new generation electrochemical oxidation technology. Rapid preparation of porous electrodes can be easily achieved by synchronous oxygen bubble electrodeposition. However, according to the reaction mechanism of lead dioxide anodic electrodeposition, there is bound to be a competitive reaction of adsorbed hydroxyl radicals in the oxygen bubble template method, which means that synchronous OER impacts both the surface morphology and potentially the crystalline structure of the metal oxides.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
Polymeric mixed ionic-electronic conductors (PMIECs) are gaining significant attention due to their potential applications in organic electrochemical transistors (OECTs). However, the performance of n-type OECTs still lags behind that of their p-type counterparts. Here, the structure-performance correlation of fused bithiophene imide dimer (BTI2)-based PMIECs is systematically investigated with the backbone evaluation from acceptor-strong donor (A-SD) to acceptor-donor (A-D), to acceptor-weak donor (A-WD), to acceptor-weak acceptor (A-WA), and finally to A-A structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!