Process and composition variables of catalytic oxidation of 2-propanol on Pt-Mn/γ-Al(2)O(3) bimetallic catalysts were optimized and modeled by response surface methodology (RSM). 31 factorial experiments were designed by setting four factors at five levels: X (1) = amount of manganese loading (wt.% Mn = 1, 3, 5, 7, 9); X (2) = reaction temperature (25, 50, 75, 100, 125°C); X (3) = calcination temperature (200, 300, 400, 500, 600°C) and X (4) = calcination time (2, 3, 4, 5, 6 h). A second-order polynomial model and response surface were developed for 2-propanol conversion. The optimum conditions for 2-propanol complete conversion were 4.8wt.% manganese loading, 4h calcination time with 75°C and 395°C for reaction and calcination temperatures, respectively. A good correlation was found between experimental and predicted responses, confirming the reliability of the model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2012.645781 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!