The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271075PMC
http://dx.doi.org/10.1371/journal.ppat.1002517DOI Listing

Publication Analysis

Top Keywords

inflammatory cascade
16
ikk complex
8
inflammatory
7
cascade
5
viral
4
viral mediated
4
mediated redirection
4
redirection nemo/ikkγ
4
nemo/ikkγ autophagosomes
4
autophagosomes curtails
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!