MEMS-based power generation techniques for implantable biosensing applications.

Sensors (Basel)

Department of Mechanical Engineering, University of Alberta, University of Alberta, Edmonton, Alberta T6G 2G8, Canada.

Published: June 2012

Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274013PMC
http://dx.doi.org/10.3390/s110201433DOI Listing

Publication Analysis

Top Keywords

implantable biosensing
16
generation techniques
12
biosensing applications
12
mems-based generation
8
implantable biosensors
8
electrical power
8
existing battery-based
8
battery-based power
8
power systems
8
power
7

Similar Publications

Implantable Passive Sensors for Biomedical Applications.

Sensors (Basel)

December 2024

School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece.

Article Synopsis
  • Implantable sensors are becoming popular for localized and continuous monitoring in medical settings, allowing for early detection and timely interventions.
  • There are two main types of implantable sensors: active, which have more advanced functionalities but require a power source, and passive, which don't need power and offer simpler, smaller designs.
  • This review focuses on passive sensor technologies, discussing their materials, detection methods, clinical applications, advantages over active sensors, and important considerations for their packaging and compatibility with the human body.
View Article and Find Full Text PDF

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

Advancements in Porous Silicon Biosensors for Point of Care, Wearable, and Implantable Applications.

ACS Appl Mater Interfaces

January 2025

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.

Biosensors play a critical role in modern diagnostics, offering high sensitivity and specificity for detecting various relevant clinical analytes as well as real-time monitoring and integrability in point-of-care (POC) platforms and wearable/implantable devices. Among the numerous materials used as biosensing substrates, porous silicon (pSi) has garnered significant attention due to its tunable properties, ease of fabrication, large surface area, and versatile surface chemistry. These attributes make pSi an ideal platform for transducer development, particularly in the fabrication of optical and electrochemical biosensors.

View Article and Find Full Text PDF

Devices for the electrical stimulation of the olfactory system: A review.

Biosens Bioelectron

March 2025

Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.

The loss of olfactory function has a profound impact on quality of life, affecting not only sensory perception but also memory, emotion, and overall well-being. Despite this, advancements in olfactory prostheses have lagged significantly behind those made for vision and hearing restoration. This review offers a comprehensive analysis of the current state of devices for electrical stimulation of the olfactory system.

View Article and Find Full Text PDF

Hyaluronic acid-based hydrogels are emerging as highly versatile materials for cost-effective biosensors, capable of sensitive chemical and biological detection. These hydrogels, functionalized with specific groups, exhibit sensitivity modulated by factors such as temperature, pH, and analyte concentration, allowing for a broad spectrum of applications. This study presents a patent-centered overview of recent advancements in hyaluronic acid hydrogel biosensors from 2003 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!