The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274228 | PMC |
http://dx.doi.org/10.3390/s100403444 | DOI Listing |
Sensors (Basel)
December 2024
Stony Brook Institute at Anhui University, Hefei 230000, China.
The Internet of Things (IoT) contains many devices that can compute and communicate, creating large networks. Industrial Internet of Things (IIoT) represents a developed application of IoT, connecting with embedded technologies in production in industrial operational settings to offer sophisticated automation and real-time decisions. Still, IIoT compels significant cybersecurity threats beyond jamming and spoofing, which could ruin the critical infrastructure.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China.
This paper presents research on the security performance of a multi-user interference-based mixed RF/FSO system based on SWIPT untrusted relay. In this work, the RF and FSO channels experience Nakagami-m fading distribution and Málaga (M) turbulence, respectively. Multiple users transmit messages to the destination with the help of multiple cooperating relays, one of which may become an untrusted relay as an insider attacker.
View Article and Find Full Text PDFSensors (Basel)
December 2024
LASSENA-Laboratory of Space Technologies, Embedded Systems, Navigation and Avionics, École de Technologie Supérieure (ETS), Montreal, QC H3C-1K3, Canada.
The hindering of Global Navigation Satellite Systems (GNSS) signal reception by jamming and spoofing attacks degrades the signal quality. Careful attention needs to be paid when post-processing the signal under these circumstances before feeding the signal into the GNSS receiver's post-processing stage. The identification of the time domain statistical attributes and the spectral domain characteristics play a vital role in analyzing the behaviour of the signal characteristics under various kinds of jamming attacks, spoofing attacks, and multipath scenarios.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Communications and Navigation, German Aerospace Center (DLR), 51147 Köln, Germany.
Spoofing attacks pose a significant security risk for organizations and systems relying on global navigation satellite systems (GNSS) for their operations. While the existing spoofing detection methods have shown some effectiveness, these can be vulnerable to certain attacks, such as secure code estimation and replay (SCER) attacks, among others.This paper analyzes the potential of satellite fingerprinting methods for GNSS spoofing detection and benchmarks their performance using real (in realistic scenarios by using GPS and Galileo signals generated and recorded in the advanced GNSS simulation facility of DLR) GNSS signals and scenarios.
View Article and Find Full Text PDFSci Rep
October 2024
MEU Research Unit, Middle East University, 11831, Amman, Jordan.
Robust verification protocols are crucial for maintaining the security and reliability of sensitive information due to the increasing complexity of cyber-attacks. This paper introduces a novel 5G Secure Handover Protocol aimed at addressing security and effectiveness issues encountered in existing systems. The proposed protocol is robust against various attacks, including de-synchronization, replay, man-in-the-middle (MITM), denial of services (DoS), and jamming, ensures perfect forward key secrecy, safeguarding communication confidentiality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!