This paper describes the implementation of the Wide Area Differential Global Positioning System (WADGPS) system in order to evaluate the operational performance of a satellite based aviation navigation system within Taipei Flight Information Region (FIR). The main objective of the WADGPS is to provide real time integrity information regarding the use of GPS for civil aviation applications. This paper uses the e-GPS observation stations operated by the Taiwan Ministry of Interior (MOI) as the WADGPS reference stations to collect the L1-L2 dual-frequency GPS measurements. A WADGPS master station is also implemented to process all GPS measurements sent from each reference station, and then generate the vector corrections. These vector corrections consist of the satellite ephemeris and clock errors, and a grid of ionospheric delays. The data stream also includes confidence bounds for the corrections and "Use/Do Not Use" messages to provide integrity. These messages are then passed to the WADGPS user through the Internet. This paper discusses the WADGPS system architecture and the system performance analysis. A five-day operation performance in Taipei Flight Information Region (FIR) is presented in this paper. The results show that the WADGPS can improve the accuracy performance of GPS positioning and fulfill the integrity performance required by Non-Precision Approach (NPA) defined by the International Civil Aviation Organization (ICAO).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274211PMC
http://dx.doi.org/10.3390/s100402995DOI Listing

Publication Analysis

Top Keywords

wadgps system
12
taipei flight
12
flight region
12
wadgps
8
system taipei
8
region fir
8
civil aviation
8
gps measurements
8
vector corrections
8
system
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!