Dysferlin is a transmembrane protein implicated in surface membrane repair of muscle cells. Mutations in dysferlin cause the progressive muscular dystrophies Miyoshi myopathy, limb girdle muscular dystrophy 2B, and distal anterior compartment myopathy. Dysferlinopathies are inherited in an autosomal recessive manner, and many patients with this disease harbor mis-sense mutations in at least one of their two pathogenic DYSF alleles. These patients have significantly reduced or absent dysferlin levels in skeletal muscle, suggesting that dysferlin encoded by mis-sense alleles is rapidly degraded by the cellular quality control system. We reasoned that mis-sense mutated dysferlin, if salvaged from degradation, might be biologically functional. We used a dysferlin-deficient human myoblast culture harboring the common R555W mis-sense allele and a DYSF-null allele, as well as control human myoblast cultures harboring either two wild-type or two null alleles. We measured dysferlin protein and mRNA levels, resealing kinetics of laser-induced plasmalemmal wounds, myotube formation, and cellular viability after treatment of the human myoblast cultures with the proteasome inhibitors lactacystin or bortezomib (Velcade). We show that endogenous R555W mis-sense mutated dysferlin is degraded by the proteasomal system. Inhibition of the proteasome by lactacystin or Velcade increases the levels of R555W mis-sense mutated dysferlin. This salvaged protein is functional as it restores plasma membrane resealing in patient-derived myoblasts and reverses their deficit in myotube formation. Bortezomib and lactacystin did not cause cellular toxicity at the regimen used. Our results raise the possibility that inhibition of the degradation pathway of mis-sense mutated dysferlin could be used as a therapeutic strategy for patients harboring certain dysferlin mis-sense mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323038 | PMC |
http://dx.doi.org/10.1074/jbc.M111.329078 | DOI Listing |
Plant Biotechnol J
December 2024
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Tomato fruit ripening is a complex developmental process that is important for fruit quality and shelf life. Many factors, including ethylene and several key transcription factors, have been shown to play important roles in the regulation of tomato fruit ripening. However, our understanding of the regulation of tomato fruit ripening is still limited.
View Article and Find Full Text PDFBrain Commun
May 2024
Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK.
Amyotrophic lateral sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that amyotrophic lateral sclerosis is part of a spectrum of disorders, ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic lateral sclerosis Type 8 is a familial disease caused by mis-sense mutations in .
View Article and Find Full Text PDFFront Immunol
March 2024
Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan.
BCL11B is a transcription factor with six CH-type zinc-finger domains. Studies in mice have shown that Bcl11b plays essential roles in T cell development. Several germline heterozygous BCL11B variants have been identified in human patients with inborn errors of immunity (IEI) patients.
View Article and Find Full Text PDFBiochem J
December 2023
Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K.
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1.
View Article and Find Full Text PDFNat Commun
March 2023
Disease Intervention Technology Lab (DITL), Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
Mis-sense mutations affecting TP53 promote carcinogenesis both by inactivating tumor suppression, and by conferring pro-carcinogenic activities. We report here that p53 DNA-binding domain (DBD) and transactivation domain (TAD) mis-sense mutants unexpectedly activate pro-carcinogenic epidermal growth factor receptor (EGFR) signaling via distinct, previously unrecognized molecular mechanisms. DBD- and TAD-specific TP53 mutants exhibited different cellular localization and induced distinct gene expression profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!