The specification of the skeletal muscle lineage during craniofacial development is dependent on the activity of MYF5 and MYOD, two members of the myogenic regulatory factor family. In the absence of MYF5 or MYOD there is not an overt muscle phenotype, whereas in the double Myf5;MyoD knockout branchiomeric myogenic precursors fail to be specified and skeletal muscle is not formed. The transcriptional regulation of Myf5 is controlled by a multitude of regulatory elements acting at different times and anatomical locations, with at least five operating in the branchial arches. By contrast, only two enhancers have been implicated in the regulation of MyoD. In this work, we characterize an enhancer element that drives Myf5 expression in the branchial arches from 9.5 days post-coitum and show that its activity in the context of the entire locus is dependent on two highly conserved E-boxes. These binding sites are required in a subset of Myf5-expressing cells including both progenitors and those which have entered the myogenic pathway. The correct levels of expression of Myf5 and MyoD result from activation by musculin and TCF21 through direct binding to specific enhancers. Consistent with this, we show that in the absence of musculin the timing of activation of Myf5 and MyoD is not affected but the expression levels are significantly reduced. Importantly, normal levels of Myf5 expression are restored at later stages, which might explain the absence of particular muscles in the Msc;Tcf21 double-knockout mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274357 | PMC |
http://dx.doi.org/10.1242/dev.068015 | DOI Listing |
Biomater Adv
January 2025
Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural Economics and Animal Production, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, Limpopo, South Africa.
The objective of this study was to determine the relationship between the MRF gene family members and slaughter characteristics in Saanen kids with varying slaughter weights. Twenty male kids of the Turkish Saanen breed were individually fattened for 60 days after weaning under an intensive management system. The kids were divided into two groups: low slaughter weight (L; = 11; ≤29 kg) and high slaughter weight (H; = 13; >29) at the end of the fattening.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
The neuroendocrine hormone melatonin is associated with circadian rhythms and has antioxidant and vasodilative properties. In cattle, melatonin rescues fetal growth during maternal nutrient restriction in a seasonally dependent manner, but melatonin research in swine is limited. The objective of this study was to evaluate the effects of dietary melatonin supplementation during mid to late gestation on circadian rhythm and muscle growth and development of the longissimus dorsi in utero and postnatally.
View Article and Find Full Text PDFGene
February 2025
The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA. Electronic address:
Understanding the early stages of human congenital myopathies is critical for proposing strategies for improving musculoskeletal muscle performance, such as restoring the functional integrity of the cytoskeleton. SH3 and cysteine-rich domain 3 (STAC3) are proteins involved in nutrient regulation and are an essential component of the excitation-contraction (EC) coupling machinery for Ca releasing. A mutation in STAC3 causes debilitating Native American Myopathy (NAM) in humans, while loss of this gene in mice and zebrafish (ZF) results in premature death.
View Article and Find Full Text PDFBMC Musculoskelet Disord
November 2024
Beilun District People's Hospital of Ningbo, No. 1288, Lushan East Road, Ningbo, Zhejiang Province, 315800, China.
Objective: To investigate the effects of zoledronic acid on muscle metabolism in mice with osteoporosis and sarcopenia and elucidate the possible underlying mechanism.
Methods: Twenty-four 8-week-old male C57BL/6J mice were randomly divided into four groups: non-suspension (N-SUS), suspension (SUS), suspension + zoledronic acid (ZA), and suspension + PTH(PTH) groups. Equal doses of saline, zoledronic acid, and PTH were administered subcutaneously.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!