Axonal injury is consistently observed after traumatic brain injury (TBI). Prior research has extensively characterized the post-TBI response in myelinated axons. Despite evidence that unmyelinated axons comprise a numerical majority of cerebral axons, pathologic changes in unmyelinated axons after TBI have not been systematically studied. To identify morphologic correlates of functional impairment of unmyelinated fibers after TBI, we assessed ultrastructural changes in corpus callosum axons. Adult rats received moderate fluid percussion TBI, which produced diffuse injury with no contusion. Cross-sectional areas of 13,797 unmyelinated and 3,278 intact myelinated axons were stereologically measured at survival intervals from 3 hours to 15 days after injury. The mean caliber of unmyelinated axons was significantly reduced at 3 to 7 days and recovered by 15 days, but the time course of this shrinkage varied among the genu, mid callosum, and splenium. Relatively large unmyelinated axons seemed to be particularly vulnerable. Injury-induced decreases in unmyelinated fiber density were also observed, but they were more variable than caliber reductions. By contrast, no significant morphometric changes were observed in myelinated axons. The finding of a preferential vulnerability in unmyelinated axons has implications for current concepts of axonal responses after TBI and for development of specifically targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295246 | PMC |
http://dx.doi.org/10.1097/NEN.0b013e3182482590 | DOI Listing |
Nat Commun
January 2025
Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University - Yifu Science Hall, 37 Xueyuan Road, Haidian, Beijing 100191, China. Electronic address:
Quantifying axons and myelin is essential for understanding spinal cord injury (SCI) mechanisms and developing targeted therapies. This study proposes and validates an automated method to measure axons and myelin, applied to compare contusion, dislocation, and distraction SCIs in a rat model. Spinal cords were processed and stained for neurofilament, tubulin, and myelin basic protein, with histology images segmented into dorsal, lateral, and ventral white matter regions.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
Carpal tunnel syndrome (CTS) is the most common compression neuropathy. The median nerve contains sensory, motor, and sympathetic fibers. Involvement of the different fibers of the median nerve in CTS may vary; hence, one of the sensory, motor, or autonomic dysfunctions may be dominant.
View Article and Find Full Text PDFMol Autism
December 2024
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.
View Article and Find Full Text PDFBrain Commun
November 2024
Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France.
Hereditary optic neuropathies, including dominant optic atrophy and Leber's hereditary optic neuropathy, are genetic disorders characterized by retinal ganglion cell degeneration leading to vision loss, mainly associated with mitochondrial dysfunction. In this study, we analysed mitochondrial distribution and ultrastructure in the retina and longitudinal optic nerve sections of pre-symptomatic hereditary optic neuropathies mouse models with Opa1 and Nd6 deficiency to identify early mitochondrial changes. Our results show significant mitochondrial fragmentation and increased mitophagy in mice, indicating early mitochondrial changes prior to neuronal loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!