Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes.

J Plant Physiol

Genomics and Proteomics Research Group for Improvement of Salt-tolerant Rice, Department of Biology, Khon Kaen University, Khon Kaen 40002, Thailand.

Published: April 2012

Proline (Pro) and Trehalose (Tre) function as compatible solutes and are upregulated in plants under abiotic stress. They play an osmoprotective role in physiological responses, enabling the plants to better tolerate the adverse effects of abiotic stress. We investigated the effect of exogenous Pro and Tre (10 mM) in seedlings of Thai aromatic rice (cv. KDML105; salt-sensitive) during salt stress and subsequent recovery. Salt stress (S, NaCl) resulted in growth reduction, increase in the Na(+)/K(+) ratio, increase in Pro level and up-regulation of Pro synthesis genes (pyrroline-5-carboxylatesynthetase, P5CS; pyrroline-5-carboxylate reductase, P5CR) as well as accumulation of hydrogen peroxide (H(2)O(2)), increased activity of antioxidative enzymes (superoxide dismutase, SOD; peroxidase, POX; ascorbate peroxidase, APX; catalase, CAT) and transcript up-regulation of genes encoding antioxidant enzymes (Cu/ZnSOD, MnSOD, CytAPX, CatC). Under salt stress, exogenous Pro (PS; Pro+NaCl) reduced the Na(+)/K(+) ratio, further increased endogenous Pro and transcript levels of P5CS and P5CR, but decreased the activity of the four antioxidant enzymes. The transcription of genes encoding several antioxidant enzymes was upregulated. Exogenous Tre (TS; Tre+NaCl) also reduced the Na(+)/K(+) ratio and strongly decreased endogenous Pro. Transcription of P5CS and P5CR was upregulated, the activities of SOD and POX decreased, the activity of APX increased and the transcription of all antioxidant enzyme genes upregulated. Although exogenous osmoprotectants did not alleviate growth inhibition during salt stress, they exhibited a pronounced beneficial effect during recovery period showing higher percentage of growth recovery in PS (162.38%) and TS (98.43%) compared with S (3.68%). During recovery, plants treated with PS showed a much greater reduction in endogenous Pro than NaCl-treated (S) or Tre-treated plants (TS). Increase in CAT activity was most related to significant reduction in H(2)O(2), particularly in the case of PS-treated plants. Advantageous effects of Pro were also associated with increase in APX activity during recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2012.01.004DOI Listing

Publication Analysis

Top Keywords

antioxidant enzymes
16
salt stress
16
na+/k+ ratio
12
endogenous pro
12
pro
9
abiotic stress
8
exogenous pro
8
genes encoding
8
encoding antioxidant
8
reduced na+/k+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!