This paper is based on a research project - Visual Communication and Inclusive Design-Colour, Legibility and Aged Vision, developed at the Faculty of Architecture of Lisbon. The research has the aim of determining specific design principles to be applied to visual communication design (printed) objects, in order to be easily read and perceived by all. This study target group was composed by a selection of socially active individuals, between 55 and 80 years, and we used cultural events posters as objects of study and observation. The main objective is to overlap the study of areas such as colour, vision, older people's colour vision, ergonomics, chromatic contrasts, typography and legibility. In the end we will produce a manual with guidelines and information to apply scientific knowledge into the communication design projectual practice. Within the normal aging process, visual functions gradually decline; the quality of vision worsens, colour vision and contrast sensitivity are also affected. As people's needs change along with age, design should help people and communities, and improve life quality in the present. Applying principles of visually accessible design and ergonomics, the printed design objects, (or interior spaces, urban environments, products, signage and all kinds of visually information) will be effective, easier on everyone's eyes not only for visually impaired people but also for all of us as we age.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/WOR-2012-0891-5590 | DOI Listing |
Front Med (Lausanne)
December 2024
Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China.
Purpose: This study presents a novel randomized controlled trial investigating photobiomodulation (PBM) therapy as an intervention method for color vision deficiency (CVD).
Methods: A total of 74 participants with CVD were assigned to either the PBM group or the control group. In the PBM group, participants wore virtual reality (VR) goggles twice daily, with a 12-h interval, over a four-week period.
Nat Commun
January 2025
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
Ubiquitous white light-emitting diodes (LEDs) possess optical properties that differ from those of natural light. This difference can impact visual perception and biological functions, thus potentially affecting eye health. Myopia, which leads to visual impairments and potentially irreversible vision loss or blindness, is the most prevalent refractive error worldwide.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Nocturnal and crepuscular fast-eyed insects often exploit multiple optical channels and temporal summation for fast and low-light imaging. Here, we report high-speed and high-sensitive microlens array camera (HS-MAC), inspired by multiple optical channels and temporal summation for insect vision. HS-MAC features cross-talk-free offset microlens arrays on a single rolling shutter CMOS image sensor and performs high-speed and high-sensitivity imaging by using channel fragmentation, temporal summation, and compressive frame reconstruction.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!