This study aims to evaluate the reliability and establish procedures for the use of digital photogrammetry in anthropometric measurements of the human hand. The methodology included the construction of a platform to allow the placement of the hand always equivalent to a distance of the camera lens and to annul the effects of parallax. We developed a software to perform the measurements from the images and built up a subject of proof in a cast from a negative mold, this object was subjected to measurements with digital photogrammetry using the data collection platform in caliper and the Coordinate Measuring Machine (MMC). The results of the application of photogrammetry in the data collection segment hand, allow us to conclude that photogrammetry is an effective presenting precision coefficient below 0.940. Within normal and acceptable values, given the magnitude of the data used in anthropometry. It was concluded photogrammetry then be reliable, accurate and efficient for carrying out anthropometric surveys of population, and presents less difficulty to collect in-place.

Download full-text PDF

Source
http://dx.doi.org/10.3233/WOR-2012-0069-4046DOI Listing

Publication Analysis

Top Keywords

digital photogrammetry
8
photogrammetry data
8
data collection
8
photogrammetry
6
photogrammetry procedures
4
procedures applied
4
applied anthropometry
4
anthropometry study
4
study aims
4
aims evaluate
4

Similar Publications

Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).

View Article and Find Full Text PDF

Objective: This study aimed to compare the accuracy of Qlone, Magiscan, and 3dMD with that of direct anthropometry (DA).

Methods: The study involved 41 patients. Sixteen facial landmarks, including six individual and five paired points, were marked on each participant's face.

View Article and Find Full Text PDF

Protocol for 3D photogrammetry and morphological digitization of complex skulls.

STAR Protoc

January 2025

Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy. Electronic address:

Here, we present a protocol for 3D photogrammetry and morphological digitization of skulls, including complex ones with tusks, antlers, and horns, which are challenging to reconstruct digitally. We describe steps for setting up specimens for image acquisition, including camera and lighting configurations, and the subsequent image processing to generate high-quality 3D models. We also outline the extraction of morphological data for accurate geometric morphometric analyses.

View Article and Find Full Text PDF

Purpose: This study aimed to clarify the applicability of smartphone-based three-dimensional (3D) surface imaging for clinical use in oral and maxillofacial surgery, comparing two smartphone-based approaches to the gold standard.

Methods: Facial surface models (SMs) were generated for 30 volunteers (15 men, 15 women) using the Vectra M5 (Canfield Scientific, USA), the TrueDepth camera of the iPhone 14 Pro (Apple Inc., USA), and the iPhone 14 Pro with photogrammetry.

View Article and Find Full Text PDF

Introduction: In contemporary clinical settings, three-dimensional (3D) models have become an integral component of daily practice. Photogrammetry, a novel method in clinical practice, enables the creation of precise 3D models from small objects while maintaining their original shape and size.

Aim:  To evaluate the accuracy and reliability of digital models (DM) generated using photogrammetry techniques compared to traditional gypsum models (GM) and to investigate the feasibility of utilizing free software for processing and manipulating digital dental models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!