Progress of oncolytic viruses in sarcomas.

Expert Rev Anticancer Ther

Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ 85016, USA.

Published: February 2012

Oncolytic virotherapy has shown exciting promise for the treatment of many types of solid tumors. Pediatric sarcomas are an aggressive type of pediatric malignancy known to show limited responsiveness to current therapies, leading to unacceptably high morbidity and mortality. Oncolytic viruses have only recently been used for the treatment of this challenging cancer, and results have been encouraging. Five clinical trials are currently open evaluating the use of oncolytic viruses in pediatric malignancies. Advances in genetic engineering of the viruses include improving the ability of the virus to infect tumor cells, engineering the virus with transgenes which improve the virus' ability to kill tumor cells and manipulating the virus to enhance concomitantly administered therapies. Further understanding of the antiviral immune response and a viral induced anti-tumor immune response will permit a maximization of oncolytic virotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1586/era.11.205DOI Listing

Publication Analysis

Top Keywords

oncolytic viruses
12
oncolytic virotherapy
8
tumor cells
8
immune response
8
progress oncolytic
4
viruses
4
viruses sarcomas
4
oncolytic
4
sarcomas oncolytic
4
virotherapy exciting
4

Similar Publications

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.

View Article and Find Full Text PDF

Ovarian cancer is the deadliest gynecologic cancer, and with the majority of patients dying within the first five years of diagnosis, new therapeutic options are required. The small guanosine triphosphatase (GTPase) Ras-related nuclear protein (Ran) has been reported to be highly expressed in high-grade serous ovarian cancers (HGSOCs) and associated with poor outcomes. Blocking Ran function or preventing its expression were shown to be promising treatment strategies, however, there are currently no small molecule inhibitors available to specifically inhibit Ran function.

View Article and Find Full Text PDF

Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!