Effect of H₂S on the circadian rhythm of mouse hepatocytes.

Lipids Health Dis

Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, PR China.

Published: February 2012

Background: Dysregulation of circadian rhythms can contribute to diseases of lipid metabolism. NAD-dependent deacetylase sirtuin-1(SIRT1) is an important hub which links lipid metabolism with circadian clock by its deacetylation activity depends on intracellular NAD+/NADH content ratio. Hydrogen sulfide (H₂S) is an endogenous reductant which can affect the intracellular redox state. Therefore, we hypothesized that exogenous H₂S can affect the expression of circadian clock genes mediated by sirt1 thereby affecting body's lipid metabolism. And also because the liver is a typical peripheral circadian clock oscillator that is intimately linked to lipid metabolism. Thus the effect of H₂S were observed on 24-hour dynamic expression of 4 central circadian clock genes and sirt1gene in primary cultured hepatocytes.

Results: We established a hepatocyte model that showed a circadian rhythm by serum shock method. And detected that the expression level and the peak of circadian clock genes decreased gradually and H₂S could maintain the expression and amplitude of circadian clock genes such as Clock, Per2, Bmal1 and Rev-erbαwithin a certain period time. Accordingly the expression level of sirt1 in H₂S group was significantly higher than that in the control group.

Conclusion: Exogenous reductant H₂S maintain the circadian rhythm of clock gene in isolated liver cells. We speculated that H₂S has changed NAD+/NADH content ratio in hepatocytes and enhanced the activity of SIRT1 protein directly or indirectly, so as to maintain the rhythm of expression of circadian clock genes, they play a role in the prevention and treatment of lipid metabolism-related disease caused by the biological clock disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292508PMC
http://dx.doi.org/10.1186/1476-511X-11-23DOI Listing

Publication Analysis

Top Keywords

circadian clock
28
clock genes
20
lipid metabolism
16
circadian rhythm
12
circadian
10
clock
10
h₂s
8
nad+/nadh content
8
content ratio
8
expression circadian
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!