Studies of the gas phase reactions of linalool, 6-methyl-5-hepten-2-ol and 3-methyl-1-penten-3-ol with O3 and OH radicals.

J Phys Chem A

ICARE-CNRS and OSUC, 1C Avenue de la Recherche Scientifique, 45071 cedex 02 Orléans, France.

Published: June 2012

The reactions of three unsaturated alcohols (linalool, 6-methyl-5-hepten-2-ol, and 3-methyl-1-penten-3-ol) with ozone and OH radicals have been studied using simulation chambers at T ∼ 296 K and P ∼ 760 Torr. The rate coefficient values (in cm(3) molecule(-1) s(-1)) determined for the three compounds are linalool, k(O3) = (4.1 ± 1.0) × 10(-16) and k(OH) = (1.7 ± 0.3) × 10(-10); 6-methyl-5-hepten-2-ol, k(O3) = (3.8 ± 1.2) × 10(-16) and k(OH) = (1.0 ± 0.3) × 10(-10); and 3-methyl-1-penten-3-ol, k(O3) = (5.2 ± 0.6) × 10(-18) and k(OH) = (6.2 ± 1.8) × 10(-11). From the kinetic data it is estimated that, for the reaction of O(3) with linalool, attack at the R-CH═C(CH(3))(2) group represents around (93 ± 52)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the overall reaction, with reaction at the R-CH═CH(2) group accounting for about (1.3 ± 0.5)% (k(3-methyl-1-penten-3-ol)/k(linalool)). In a similar manner it has been calculated that for the reaction of OH radicals with linalool, attack of the OH radical at the R-CH═C(CH(3))(2) group represents around (59 ± 18)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the total reaction, while addition of OH to the R-CH═CH(2) group is estimated to be around (36 ± 6)% (k(3-methyl-1-penten-3-ol)/k(linalool)). Analysis of the products from the reaction of O(3) with linalool confirmed that addition to the R-CH═C(CH(3))(2) group is the predominant reaction pathway. The presence of formaldehyde and hydroxyacetone in the reaction products together with compelling evidence for the generation of OH radicals in the system indicates that the hydroperoxide channel is important in the loss of the biradical [(CH(3))(2)COO]* formed in the reaction of O(3) with linalool. Studies on the reactions of O(3) with the unsaturated alcohols showed that the yields of secondary organic aerosols (SOAs) are higher in the absence of OH scavengers compared to the yields in their presence. However, even under low-NO(X) concentrations, the reactions of OH radicals with 3-methyl-1-penten-3-ol and 6-methyl-5-hepten-2-ol will make only a minor contribution to SOA formation under atmospheric conditions. Relatively high yields of SOAs were observed in the reactions of OH with linalool, although the initial concentrations of reactants were quite high. The importance of linalool in the formation of SOAs in the atmosphere requires further investigation. The impact following releases of these unsaturated alcohols into the atmosphere are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp211355dDOI Listing

Publication Analysis

Top Keywords

unsaturated alcohols
12
reaction linalool
12
r-ch═cch32 group
12
linalool
9
reaction
9
reactions linalool
8
linalool 6-methyl-5-hepten-2-ol
8
6-methyl-5-hepten-2-ol 3-methyl-1-penten-3-ol
8
ko3 10-16
8
10-16 koh
8

Similar Publications

The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NB) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites.

View Article and Find Full Text PDF

Ambient-pressure selective hydrogenation of unsaturated aldehydes and ketones into unsaturated alcohols in the water phase.

Dalton Trans

January 2025

Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.

A universal and green catalytic system for the hydrogenation of unsaturated aldehydes and ketones into the corresponding alcohols with the CC bonds retained under atmospheric hydrogen pressure in the water phase was realized by -functionalized amino ligand-stabilized ruthenium complexes (-PPhCHNHMe)[(CHNHR)]RuCl (R = H, Me, Et) and (-PPhCHNMe)[(CHNHEt)]RuCl with wide substrate compatibility and excellent functionality tolerance. The structural synergism between -PPhCHNHMe and (CHNHEt) achieves the enhanced performance, with a positive correlation with the electron density of the amino ligand.

View Article and Find Full Text PDF

Background: Association between dietary factors and the risk of developing inflammatory bowel disease (IBD) has been studied extensively. However, identification of deleterious dietary patterns merits further study.

Aim: To investigate the risk of developing Crohn's disease (CD) and ulcerative colitis (UC) according to the inflammatory score of the diet (ISD) in the multinational European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

View Article and Find Full Text PDF

Ultrahigh-Selectivity Photocatalytic Upgrading of Bio-Aldehydes/Diols to Monoalcohols Via In Situ Circumventing Coupling Co-Products Over Janus Single-Atom Pd/TiO.

Small Methods

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.

Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.

View Article and Find Full Text PDF

Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!