Four series of acridine-linked aniline mustards have been prepared and evaluated for in vitro cytotoxicity, in vivo antitumor activity, and DNA cross-linking ability. The anilines were attached to the DNA-intercalating acridine chromophores by link groups (-O-, -CH2-, -S-, and -SO2-) of widely varying electronic properties, providing four series of widely differing mustard reactivity where the alkyl chain linking the acridine and mustard moieties was varied from two to five carbons. Relationships were sought between chain length and biological properties. Within each series, increasing the chain length did not alter the reactivity of the alkylating moiety but did appear to position it differently on the DNA, since cross-linking ability (measured by agarose gel assay) altered with chain length, being maximal with the C4 analogue. The in vivo antitumor activities of the compounds depended to some extent on the reactivity of the mustard, with the least reactive SO2 compounds being inactive. However, DNA-targeting did appear to allow the use of less reactive mustards, since the S-linked acridine mustards showed significant activity whereas the parent S-mustard did not. Within each active series, the most active compound was the C4 homologue, suggesting some relationship between activity and extent of DNA alkylation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00173a016DOI Listing

Publication Analysis

Top Keywords

chain length
12
acridine-linked aniline
8
aniline mustards
8
vivo antitumor
8
dna cross-linking
8
cross-linking ability
8
chain
5
dna-directed alkylating
4
alkylating agents
4
agents structure-activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!