Formation of zwitterionic fullerodendron using a new DBN-focal dendron.

Sensors (Basel)

Graduate School of Environmental Science, Okayama University, Tsushima-Naka 3-1-1, Kita-Ku, Okayama 700-8530, Japan.

Published: July 2012

A new poly(amidoamine) dendron having 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) at the focal point was synthesized. Interestingly, formation of zwitterionic fullerodendrons (λ(max) = 930 nm for C(60) and 795 nm for C(70)) were observed by Vis-NIR spectroscopy upon the reaction of C(60) or C(70) with the DBN-focal dendron. In particular, the C(70) anion was effectively stabilized by the site isolation effect of the dendritic wedge. The half-life of fullerodendron 12b having C(70) anion at the focal point reaches 7,345 min, which is 20 times longer than that of complex between C(60) and pristine DBN. Furthermore, in order to confirm the structure of the zwitterionic complex, fullerodendron 12a was reprecipitated from benzonitrile/1,2,4-trimethylbenzene, and was observed using IR spectroscopy and APPI-MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270858PMC
http://dx.doi.org/10.3390/s100100613DOI Listing

Publication Analysis

Top Keywords

formation zwitterionic
8
dbn-focal dendron
8
focal point
8
c70 anion
8
zwitterionic fullerodendron
4
fullerodendron dbn-focal
4
dendron polyamidoamine
4
polyamidoamine dendron
4
dendron 15-diazabicyclo[430]non-5-ene
4
15-diazabicyclo[430]non-5-ene dbn
4

Similar Publications

Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.

View Article and Find Full Text PDF

Biological fouling seriously jeopardizes the development of the marine industry. Although hydrogels, as a kind of state-of-the-art antifouling material, have received wide attention, their mechanical strength is still relatively weak, and the synergistic antifouling method is comparatively single, thus limiting the performance of hydrogels. Here, a zwitterionic sulfobetaine methacrylate (SBMA)-acrylamide (AM)/sodium alginate (SA) double-network (DN) antifouling hydrogel with superb antifouling ability and outstanding mechanical properties was prepared by grafting MXene/Ag (M/Ag) and the powerful biocide polyhexamethylene biguanide (PHMB).

View Article and Find Full Text PDF

The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.

View Article and Find Full Text PDF

Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions ( < 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor.

View Article and Find Full Text PDF

α-Synuclein interaction with POPC/POPS vesicles.

Soft Matter

January 2025

Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.

We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!