Mouse embryonic stem cells (ESCs) require transcriptional regulation to ensure rapid proliferation that allows for self-renewal. However, the molecular mechanism by which transcriptional factors regulate this rapid proliferation remains largely unknown. Here we present data showing that CIBZ, a BTB domain zinc finger transcriptional factor, is a key transcriptional regulator for regulation of ESC proliferation. Here we show that deletion or siRNA knockdown of CIBZ inhibits ESC proliferation. Cell cycle analysis shows that loss of CIBZ delays the progression of ESCs through the G1 to S phase transition. Conversely, constitutive ectopic expression of exogenous CIBZ in ESCs promotes proliferation and accelerates G1/S transition. These findings suggest that regulation of the G1/S transition explains, in part, CIBZ-associated ESC proliferation. Our data suggest that CIBZ acts through the post-transcriptionally regulates the expression of Nanog, a positive regulator of ESC proliferation and G1/S transition, but does not affect Oct3/4 and Sox2 protein expression. Notably, constitutive overexpression of Nanog partially rescued the proliferation defect caused by CIBZ knockdown, indicating the role of CIBZ in ESC proliferation and G1/S transition at least in part depends on the Nanog protein level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320991PMC
http://dx.doi.org/10.1074/jbc.M111.333856DOI Listing

Publication Analysis

Top Keywords

g1/s transition
20
esc proliferation
20
proliferation g1/s
12
proliferation
10
zinc finger
8
cibz
8
promotes proliferation
8
embryonic stem
8
stem cells
8
rapid proliferation
8

Similar Publications

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

Background: Exosomes, as extracellular membrane vesicles, play important roles in intercellular communication and can influence tumour progression. Circular RNAs (circRNAs) have been reported in various malignancies and are also important components of exosomes. However, the role of exosomal circRNAs in gastric cancer (GC) progression has not been completely clarified.

View Article and Find Full Text PDF

Background: Cytoskeleton-associated protein 2 like () has been demonstrated to mediate the cell cycle in cancer cells. However, it is unknown whether CKAP2L impacts colorectal cancer (CRC). The purpose of this study was to investigate the role of in CRC.

View Article and Find Full Text PDF

Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress.

Cell Commun Signal

January 2025

Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain.

Background: Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcriptional repressors of the G1/S transcriptional program, yeast functional homologs of the Retinoblastoma family proteins in mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!