AI Article Synopsis

  • Suspension-cultured hazel cells were treated with ultrasonication at power densities of 4 and 455 mW for 4-40 minutes.
  • Both treatments led to the production of significant amounts of key taxanes: Taxol, 10-deacetylbaccatin, and baccatin III, with the highest yields occurring at 8 and 20 minutes at the 455 mW power level.
  • The study found that ultrasound did not negatively affect cell viability or growth, and the increase in taxane production was likely due to enhanced biosynthesis rather than increased permeability of the cell membrane.

Article Abstract

Suspension-cultured hazel cells were ultrasonicated at power densities of 4 and 455 mW for 4-40 min. Both treatments stimulated the production of major taxanes: Taxol, 10-deacetylbaccatin, and baccatin III. The highest amounts of these taxanes (0.46, 0.26, and 0.07 mg/l, respectively) were obtained at 8 and 20 min of the treatment at 455 mW. Ultrasound had no adverse effects on cell viability, growth, or membrane integrity. Increased release of taxanes by ultrasound resulted not from increased membrane permeability but more likely from stimulation of taxanes biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-012-0865-zDOI Listing

Publication Analysis

Top Keywords

membrane integrity
8
taxanes
5
maintenance membrane
4
integrity increase
4
increase taxanes
4
taxanes production
4
production hazel
4
hazel corylus
4
corylus avellana
4
avellana cells
4

Similar Publications

The Effect of Cholesterol-Loaded Cyclodextrin and Resveratrol Compounds on Post-Thawing Quality of Ram Semen.

Vet Med Sci

January 2025

Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, İstanbul University-Cerrahpasa, Avcilar, İstanbul, Turkey.

Ram sperm are more vulnerable to freezing than those of most other farm animals. During sperm freezing, the cell membrane loses some of its cholesterol, which regulates signalling mechanisms and prevents premature capacitation. Resveratrol (RES) increases the fluidity of the cell membrane, which becomes peroxidized during freezing and reduces free radicals.

View Article and Find Full Text PDF

Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.

View Article and Find Full Text PDF

Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups.

View Article and Find Full Text PDF

Fluoxetine is used in the management of depression, anxiety and other mood disorders by increasing serotonin levels in the brain and can cause sexual side effects by changing the homeostasis of sex hormones and increasing oxidative stress. Since many men who take fluoxetine are of reproductive age and sperm are exposed to fluoxetine for a considerable time, this study aimed to examine the in vitro effects of fluoxetine on human sperm biochemical markers and sperm parameters. Semen samples from 30 fertile men were divided into three groups: a positive control group, a negative control group and a fluoxetine-treated group.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!