Allosteric ribozymes can be designed to respond to virtually any molecule of choice. The resulting species may be used for example as synthetic regulators of gene expression or alternatively as biosensors. In vitro selection techniques allow the isolation of active molecules from libraries as large as 10(15) different molecules. The present protocol describes an in vitro selection strategy for the de novo selection of allosteric self-cleaving ribozymes responding to virtually any drug of choice. We applied this method to select hammerhead ribozymes inhibited specifically by doxycycline or pefloxacin in the sub-micromolar range. The selected ribozymes can be converted into classical aptamers via insertion of a point mutation in the catalytic center of the ribozyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-545-9_19 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT, 06511, USA.
The average eukaryotic tRNA contains 13 posttranscriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully-modified cellular tRNA by human lysyl-tRNA synthetase (h-LysRS).
View Article and Find Full Text PDFQ Rev Biophys
December 2024
Department of Bioengineering, University of California Riverside, 900 University Avenue, 92521, Riverside, CA, United States.
Graph theory, a branch of mathematics that focuses on the study of graphs (networks of nodes and edges), provides a robust framework for analysing the structural and functional properties of biomolecules. By leveraging molecular dynamics (MD) simulations, atoms or groups of atoms can be represented as nodes, while their dynamic interactions are depicted as edges. This network-based approach facilitates the characterization of properties such as connectivity, centrality, and modularity, which are essential for understanding the behaviour of molecular systems.
View Article and Find Full Text PDFNat Commun
November 2024
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
Mechanisms by which G-patch activators tune the processive multi-tasking ATP-dependent RNA helicase Prp43 (DHX15 in humans) to productively remodel diverse RNA:protein complexes remain elusive. Here, a comparative study between a herein and previously characterized activators, Tma23 and Pxr1, respectively, defines segments that organize Prp43 function during ribosome assembly. In addition to the activating G-patch, we discover an inhibitory segment within Tma23 and Pxr1, I-patch, that restrains Prp43 ATPase activity.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Department of Management Information Systems, National Pingtung University of Science and Technology, Taiwan, ROC.
The Zika virus (ZIKV), a member of the Flaviviridae family, poses a major threat to human health because of the lack of effective antiviral drugs. Although the NS2B-NS3 protease of ZIKV (NS2B-NS3pro) is regarded as a major target for antiviral inhibitors, viral mutations can lead to ineffective competitive inhibitors. Allosteric inhibitors bind to highly conserved nonprotease active sites, induce conformational changes in the protease active site, and prevent substrate binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!