AURKB and MAPK involvement in the regulation of the early stages of mouse zygote development.

Sci China Life Sci

Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China.

Published: January 2012

Aurora kinases have become a hot topic for research as they have been found to play an important role in various stages of mitotic cell division and to participate in malignant conversions of tumors. The participation of Aurora kinases in the regulation of oocyte meiosis has been recently reported, but their participation in mammalian early embryonic development remained unclear. The object of our study was to establish the spatio-temporal expression pattern of Aurora kinase B (AURKB) in mouse zygotes during the first cleavage, to reveal its functions in the early development of mouse zygotes, and to define the involvement of AURKB in mitogen-activated protein kinase (MAPK) signaling. Our results showed that in mouse zygotes AURKB expression increased in G1 phase and peaked in M phase. AURKB protein distribution was found to be in association with nuclei and distributed throughout the cytoplasm in a cell cycle-dependent manner. Functional disruption of AURKB resulted in abnormal division phenotypes or mitotic impairments. U0126, a specific mitogen-activated protein kinase kinase (MEK) inhibitor, caused significantly altered morphologies of early embryos together with a decrease in protein expression and kinase activity of AURKB. Our results indicated that the activity of AURKB was required for regulating multiple stages of mitotic progression in the early development of mouse zygotes and was correlated with the activation of the MAPK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-012-4264-4DOI Listing

Publication Analysis

Top Keywords

mouse zygotes
16
aurkb
8
aurora kinases
8
stages mitotic
8
early development
8
development mouse
8
mitogen-activated protein
8
protein kinase
8
activity aurkb
8
early
5

Similar Publications

Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation.

Cell Rep

January 2025

Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China. Electronic address:

Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages.

View Article and Find Full Text PDF

Effect of introducing somatic mitochondria into an early embryo on zygotic gene activation†.

Biol Reprod

January 2025

Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.

Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear.

View Article and Find Full Text PDF

In mice, naturally occurring and induced mutations in the suppressor of cytokine signaling-2 () gene are associated with a high growth phenotype characterized by rapid post-weaning weight gain and 30-50% heavier mature body weight. In this work, we demonstrate an electroporation-based method of producing knock-out (KO) sheep. Electroporation of dual-guide CRISPR-Cas9 ribonucleoprotein complexes targeting was performed 6 h post-fertilization in sheep zygotes.

View Article and Find Full Text PDF

In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.

View Article and Find Full Text PDF

Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!