Hepatocellular carcinoma (HCC) is the third most common cancer worldwide, causing over 0.5 million deaths per year, with approximately half of these in China. Chemotherapy is the optimal treatment for patients with advanced HCC, although chemoresistance has become a significant obstacle to successful anti-cancer therapy. The expression of opsin3 (OPN3), also called encephalopsin or panopsin, is lower in 5-fluorouracil (5-FU)-resistant Bel7402(5-FU) cells compared to 5-FU-sensitive Bel7402 cells. To explore the role of OPN3 in 5-FU resistance, OPN3 overexpressing (Bel7402(5-FU)-OPN3) and knockdown (Bel7402-RNAi-OPN3) cell lines were generated. Bel7402(5-FU)-OPN3 cells were more sensitive to 5-FU treatment than controls, while OPN3 knockdown resulted in a significant increase in 5-FU resistance. This result was replicated in a second HCC cell line, HepG2. Further investigation of the mechanism revealed that decreased OPN3 levels in Bel7402(5-FU) cells activated the anti-apoptotic pathway through increasing phospho-Akt and the Bcl2/Bax ratio, while overexpression of OPN3 inactivated this pathway. Taken together, these results suggest that OPN3 depletion is involved in 5-FU resistance, and that therapeutic strategies targeting OPN3 may improve HCC sensitivity to chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2012.01.035DOI Listing

Publication Analysis

Top Keywords

5-fu resistance
12
hepatocellular carcinoma
8
opn3
8
bel74025-fu cells
8
cells
5
opsin3 sensitizes
4
sensitizes hepatocellular
4
carcinoma cells
4
cells 5-fluorouracil
4
5-fluorouracil treatment
4

Similar Publications

NNMT suppresses H3K9me3 to facilitate malignant progression and drug resistance in gastric cancer.

Arab J Gastroenterol

January 2025

Fourth Oncology Department, Anyang Tumor Hospital, Anyang City, Henan Province 455000, China. Electronic address:

Background And Study Aims: Nicotinamide N-methyltransferase (NNMT) is aberrantly expressed in tumors and is implicated in the progression and chemoresistance of cancers. This project attempts to explore the specific molecular mechanism by which NNMT enhances 5-fluorouracil (5-FU) resistance in gastric cancer (GC).

Materials And Methods: By bioinformatics analysis, the expression of NNMT in GC was analyzed and its relationship with patients' prognoses was examined.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy significantly improves prognosis for colorectal cancer patients, but resistance to drugs like 5-Fluorouracil (5-FU) is a growing problem.
  • Research identified that nucleotide metabolism may play a key role in both cancer progression and drug resistance, leading to the development of a risk score model to predict patient outcomes.
  • The study found that the gene NDUFA4L2 enhances colon cancer cell growth and movement, contributing to resistance against 5-FU, highlighting its potential as a target for improving treatment strategies.
View Article and Find Full Text PDF

TYMS Enhances Colorectal Cell Antioxidant Capacity Via the KEAP1-NRF2 Pathway to Resist Ferroptosis.

J Cancer

January 2025

The Colorectal and Anal Surgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.

Article Synopsis
  • Thymidylate synthase (TYMS) plays a crucial role in DNA synthesis and is found to be overexpressed in colorectal cancer (CRC) tissues, indicating a link to poor patient prognosis.
  • TYMS overexpression enhances CRC cell proliferation and increases cellular antioxidant capacity by downregulating KEAP1 and promoting NRF2 translocation into the nucleus, which upregulates antioxidant genes.
  • Inhibiting TYMS with 5-fluorouracil (5-FU) shows potential for drug synergism with erastin, suggesting a strategy to overcome TYMS-mediated resistance to ferroptosis in CRC treatment.
View Article and Find Full Text PDF

Inhibiting autophagy selectively prunes dysfunctional tumor vessels and optimizes the tumor immune microenvironment.

Theranostics

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.

Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.

View Article and Find Full Text PDF

GPLD1+ cancer stem cells contribute to chemotherapy resistance and tumor relapse in intestinal cancer.

J Biochem

January 2025

Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Article Synopsis
  • Cancer stem cells (CSCs) are crucial in cancer growth and resistance, and recent research has identified GPLD1 as a marker for slowly cycling CSCs using a mouse intestinal cancer model.
  • Inhibiting GPLD1, particularly combined with the chemotherapy drug 5-fluorouracil, significantly reduces cancer cell viability and prevents tumor regrowth in organoids.
  • The study also reveals the role of GPLD1 in activating Wnt signaling and promoting epithelial-mesenchymal transition (EMT) through the cleavage of serine protease 8 (PRSS8), indicating that targeting GPLD1 could be a promising new treatment approach for colorectal cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!