Metastasis remains the primary cause of cancer patient death. Although the precise molecular mechanisms at play remain largely unknown, tumor progression is currently hypothesized to follow a series of sequential steps known as the metastatic cascade. An important component, thought to be involved early in this cascade, is the process known as epithelial-mesenchymal transition (EMT), whereby epithelial cells undergo morphogenetic alterations and acquire properties typical of mesenchymal cells. EMT confers a metastatic advantage to the cancer cells through the loss of cell-cell adhesion, enhanced proteolytic activity, and increased cell migration and invasiveness. This chapter describes the experimental workflow for the secretome analysis of MDCK cells undergoing oncogenic Ras, and Ras/TGF-β-mediated EMT. To enable this comparison, serum-free cell culture conditions were optimized, and a secretome purification methodology established. Secretome samples were then subjected to DIGE analysis to reveal and quantify proteins that are differentially expressed during EMT. The proteomic strategy detailed within successfully identified several EMT modulators and broadens our understanding of the extracellular facets of the EMT process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-573-2_19DOI Listing

Publication Analysis

Top Keywords

epithelial-mesenchymal transition
8
emt
6
proteomic profiling
4
profiling epithelial-mesenchymal
4
transition dige
4
dige metastasis
4
metastasis remains
4
remains primary
4
primary cancer
4
cancer patient
4

Similar Publications

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

Bisphenol A-Induced Cancer-Associated Adipocytes Promotes Breast Carcinogenesis Via CXCL12/AKT Signaling.

Mol Cell Endocrinol

January 2025

Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.

View Article and Find Full Text PDF

Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!