Umbilical cord blood serum (UCBS) is a promising replacement for animal sera for the culture of human mesenchymal stem cells (hMSC), the unique serum composition of UCBS appearing to have variable effects on their proliferation and differentiation. Conditioning UCBS with methods such as charcoal stripping assists specific processes such as adipogenesis and osteogenesis in hMSCs. The charcoal stripping of serum removes lipophilic materials such as oestrogens, which are known inhibitors of adipogenesis. hMSC cultures supplemented with charcoal-stripped UCBS (CS-UCBS) show enhanced adipogenesis in adipogenic induction medium (AIM) containing indomethacin, 3-isobutyl-1-methylxanthine and dexamethasone. To obtain efficient adipogenesis without CS-UCBS, we have developed a modified protocol in which cells cultured separately with UCBS and CS-UCBS are constantly treated with minimal doses of insulin (1.1 μg/ml) for 10 days prior to the addition of AIM. hMSC cultures differentiated by using the modified protocol show improved adipogenesis under fetal bovine serum (FBS), UCBS and CS-UCBS conditions, with levels of adipogenesis being highest in UCBS, thereby eliminating the need for charcoal stripping. Furthermore, in each of the three sera, the insulin-pre-treated hMSCs accumulate lipid droplets faster and exhibit improved adipogenesis overall when compared with normal AIM-induced adipogenesis. We have also compared the levels of osteogenesis in hMSCs by using an induction medium devoid of dexamethasone. Maximum calcium deposition has been observed in hMSCs cultured with UCBS, as compared with those cultured with FBS or CS-UCBS. Our newly developed methods with a humanized serum supplement thus enhance the differentiation of cultured hMSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-012-1328-5DOI Listing

Publication Analysis

Top Keywords

charcoal stripping
12
ucbs cs-ucbs
12
mesenchymal stem
8
stem cells
8
umbilical cord
8
cord blood
8
blood serum
8
ucbs
8
adipogenesis
8
osteogenesis hmscs
8

Similar Publications

This study reports the development and implementation of a straightforward, rapid, and cost-effective voltammetric technique for piroxicam (PIR) detection at nanomolar concentrations in biological and environmental samples. The method involved the use of a screen-printed electrode (SPE) enhanced with a combination of Printex L6 carbon (PL6C) and polyaniline-based activated carbon (PAC) on a chitosan film crosslinked with epichlorohydrin (CTS:EPH). The detection was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV) in a 0.

View Article and Find Full Text PDF

Techno-economic analysis of nutrient recovery from urine: Centralized treatment of hydrolyzed urine vs. decentralized treatment of fresh urine.

Sci Total Environ

December 2024

BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada. Electronic address:

Article Synopsis
  • The study explores two nutrient recovery processes from urine: a centralized method using thermal NH stripping, Na-chabazite adsorption, and struvite precipitation, and a decentralized method that combines Na-chabazite and biochar adsorption, followed by urea hydrolysis.
  • It evaluates the technical and financial aspects of both methods over a 30-year period, revealing that the decentralized approach achieves higher nutrient recovery rates and has lower initial investment costs, leading to better profits and a break-even point by year 21.
  • Additionally, both methods could help mitigate contaminant load in wastewater treatment and promote sustainable nutrient recycling, with potential economic benefits from increased urine flow and biochar prices.
View Article and Find Full Text PDF

Generation, characterization, and toxicological assessment of reference ultrafine soot particles with different organic content for inhalation toxicological studies.

Sci Total Environ

November 2024

Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany.

Ultrafine particles (UFP) are the smallest atmospheric particulate matter linked to air pollution-related diseases. The extent to which UFP's physical and chemical properties contribute to its toxicity remains unclear. It is hypothesized that UFP act as carriers for chemicals that drive biological responses.

View Article and Find Full Text PDF

Drinking water treatment plants (DWTPs) in China that pioneered the biological activated carbon (BAC) process have reached 10 years of operation. There has been a renewed focus on biofiltration and the performance of old BAC filters for dissolved organic nitrogen (DON) has been poor, requiring replacement and regeneration of the BAC. Therefore, it is necessary to explore a cost-effective way to improve the water quality of the old BAC filters.

View Article and Find Full Text PDF

Background: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!