An approach to therapeutic agents through selective targeting of destabilised nucleic acid duplex sequences.

Dalton Trans

School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia.

Published: June 2012

The binding of ΔΔ/ΛΛ-[{Ru(phen)(2)}(2)(μ-bb(n))](4+) {where phen = 1,10-phenanthroline, bb(n) = 1,n-bis[4(4'-methyl-2,2'-bipyridyl)]-alkane (ΔΔ/ΛΛ-Rubb(n))} to the non-self complementary oligonucleotide 5'-d(CGCGATAAGCCGC·5'-GCGGCATTACGCG) (3-DB) has been examined using a 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) displacement assay. The 3-DB oligonucleotide contains two single adenine bulge nucleotides that are separated by three base pairs. (1)H NMR spectroscopy data demonstrated that the adenine bases are intra-helical and that the segment containing the two bulge nucleotides and the three A·T base pairs between the bulges forms a destabilised segment within the stable duplex oligonucleotide. The DAPI displacement assay demonstrated that ΔΔ-Rubb(7)-bound 3-DB with higher affinity than the other members of the ΔΔ/ΛΛ-Rubb(n) series. Molecular models suggested that the seven-carbon chain length in ΔΔ-Rubb(7) was ideal to span the distance between the two bulge sites. The binding of ΔΔ-Rubb(7) to 3-DB was also studied by (1)H NMR spectroscopy and molecular modelling. The selective changes in chemical shifts for the resonances from 3-DB upon addition of ΔΔ-Rubb(7) suggested that the metal complex specifically bound at the destabilised segment between A(5) and A(19). Observation in NOESY spectra of NOE cross peaks between 3-DB and ΔΔ-Rubb(7) confirmed that one of the ruthenium centres bound at the A(5) bulge site, with the other metal centre positioned at the A(19) bulge. In addition, ΔΔ-Rubb(7) was found to bind chromosomal DNA extracted from a suspension of Staphylococcus aureus that had been incubated with the ruthenium(ii) complex. As inert dinuclear ruthenium(ii) complexes are capable of being transported into a bacterial cell and bind chromosomal DNA, it is possible that they could be developed into anti-microbial agents that specifically target destabilised segments of DNA that are recognised by essential DNA-binding proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt12146hDOI Listing

Publication Analysis

Top Keywords

dapi displacement
8
displacement assay
8
bulge nucleotides
8
base pairs
8
nmr spectroscopy
8
destabilised segment
8
addition ΔΔ-rubb7
8
bind chromosomal
8
chromosomal dna
8
3-db
6

Similar Publications

Shikonin Stimulates Mitochondria-Mediated Apoptosis by Enhancing Intracellular Reactive Oxygen Species Production and DNA Damage in Oral Cancer Cells.

J Cell Biochem

November 2024

Department of Life Science, Cancer Drug Resistance Laboratory, NIT Rourkela, Rourkela, Odisha, India.

Phytotherapy has rendered a new insight towards the treatment of various cancers, including oral cancer with fewer side effects, over the traditional chemotherapeutic drugs to overcome chemoresistance. Shikonin (Shk) is a natural biologically active alkaloid found in the Lithospermum erythrorhizon plant's root. It has potent cytotoxic activities against various cancers.

View Article and Find Full Text PDF

We studied the topography of retinal ganglion cells (GCs) and estimated spatial resolving power (SRP) in the pajama cardinalfish Sphaeramia nematoptera (Bleeker, 1856), a relatively small brightly colored fish inhabiting coral reefs and lagoons in the Western Pacific. S. nematoptera is an active night predator feeding on near-bottom animal plankton and benthos.

View Article and Find Full Text PDF

Carvacrol expresses a wide range of biological activities, but the studies of its mechanisms focused on bacteria, mainly involving the destruction of the plasma membrane. In this study, carvacrol exhibited strong activities against several phytopathogenic fungi and demonstrated a novel antifungal mechanism against . RNA sequencing indicated that many genes of hyphae were predominately induced by carvacrol, particularly those involved in replication and transcription.

View Article and Find Full Text PDF

Double-stranded DNA bears the highest linear negative charge density (2 per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts.

View Article and Find Full Text PDF

A manganese(III) complex, [Mn(L)(SCN)(enH)](NO)·HO () (HL = 2-(()-(2-(()-2-hydroxy-3-methoxybenzylidene-amino)-ethyl-imino)methyl)-6-methoxyphenol), has been synthesized and characterized by single-crystal X-ray diffraction analysis. The interaction of with DNA was studied by monitoring the decrease in absorbance of the complex at λ = 324 nm with the increase in DNA concentration, providing an opportunity to determine the binding constant of the --DNA complex as 5.63 × 10 M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!