The ovine POU1F1 gene is localized on chromosome 1 and it contains five introns and six exons. In different mammalian species some mutations in different exons are associated with different production traits. The aim of our research was to study the POU1F1 gene nucleotide sequence to detect possible polymorphisms and their relationships with milk productive traits in Sarda breed sheep. The study had been conducted on 140 ewes, 4 or 5 years old coming from a farm located in Sardinia. All the animals were multiparous, lactating and in their third to fifth lactation. Individual milk yield had been recorded monthly and for each sample fat, protein, casein, lactose, and somatic cell count values were analysed. A jugular blood sample was collected from each ewe to perform genomic DNA extraction. PCR, SSCP and sequencing analysis were carried out to examine the six exons to highlight possible SNPs. One-way ANOVA was used to analyse association of variants with milk yield and/or its composition. Two novel SNP were found: 121 C>T in the 5'UTR of the fourth intron fragment and 249 G>A in the 3'UTR of the sixth exon fragment. The statistical analysis did not shown association between milk productive traits and the found polymorphisms. However, further investigations about the promoter region or the prophet genes, like the PROP-1, could clarify its exact role in regulating the productive traits in sheep.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-012-1525-zDOI Listing

Publication Analysis

Top Keywords

pou1f1 gene
12
productive traits
12
production traits
8
milk productive
8
milk yield
8
milk
5
traits
5
analysis polymorphism
4
polymorphism pou1f1
4
gene relation
4

Similar Publications

Article Synopsis
  • Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome is caused by heterozygous mutations leading to adrenocorticotropic hormone deficiency and immune system issues.
  • Researchers created pituitary organoids from edited human stem cells to study how specific genetic mutations affect pituitary development and found that these mutations significantly reduced the number of hormone-producing cells called corticotrophs.
  • The study identified changes in gene expression related to pituitary development and suggested that the observed mutations have a direct impact on endocrine function, classifying them as pathogenic for pituitary development.
View Article and Find Full Text PDF

Objective: This study aims to investigate the selection history, genome regions, and candidate genes associated with different chicken body sizes, thereby providing insights into the genetic basis of complex economic traits such as chicken body size and growth.

Methods: In this study, a total of 217 individuals from eight breeds were selected. According to body size, they were divided into two groups: large chickens and bantam chickens, with four breeds in each group.

View Article and Find Full Text PDF

The molecular basis of hypoprolactinaemia.

Rev Endocr Metab Disord

December 2024

Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK.

Hypoprolactinaemia is an endocrinopathy which is typically encountered as part of a combined pituitary hormone deficiency picture. The vast majority of genetic causes identified to date have been in the context of congenital hypopituitarism with multiple co-existent endocrinopathies. This is primarily with its closest hormonal relation, namely growth hormone.

View Article and Find Full Text PDF

Because the causes of combined pituitary hormone deficiency (CPHD) are complex, the etiology of congenital CPHD remains unknown in most cases. The aim of the study was to identify the genetic etiology of CPHD in a well-defined single-center cohort. In total, 34 children (12 girls) with congenital CPHD (growth hormone (GH) deficiency and impaired secretion of at least one other pituitary hormone) treated with GH in our center were enrolled in the study.

View Article and Find Full Text PDF

Differential peptide-dependent regulation of growth hormone (GH): A comparative analysis in pituitary cultures of reptiles, birds, and mammals.

Heliyon

June 2024

Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.

Growth hormone (GH) is a pituitary protein that exerts pleiotropic roles in vertebrates. The mechanisms regulating GH synthesis and secretion are finely controlled by hypothalamic neuropeptides and other factors. These processes have been considerably studied in mammals but are still poorly understood in other groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!