A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs. | LitMetric

Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs.

Phys Chem Chem Phys

SKKU Advanced Institute of Nanotechnology, and Department of Chemistry and BK-21 School of Chemical Materials Science, Sungkyunkwan University, Suwon 440-746, Korea.

Published: March 2012

In this paper, we demonstrate that Cr(2)O(3), a visible absorbing insulator, can be used as an efficient blocking layer material for the anode of dye-sensitized solar cells (DSSCs). We prepared SnO(2) electrodes surface-modified with Cr(2)O(3) with various Cr/Sn ratios and studied the effect of the modification on the performance of DSSCs. DSSCs with Cr/Sn ratios 0.02, 0.05, and 0.10 showed increased overall photon-to-electricity conversion efficiency from that of pure SnO(2). Especially, the DSSC with the Cr/Sn ratio 0.02 showed a remarkably large increase by 55%. The electrode materials were analyzed by powder X-ray diffraction, transmission electron microscopy, N(2) adsorption studies, and UV-Vis diffuse reflectance spectroscopy. The Cr-containing species appears to be Cr(2)O(3) nanoparticles, spread evenly on the SnO(2) nanoparticles and filling the gap space between SnO(2) particles. The electrochemical properties of the electrodes were characterized by Mott-Schottky plots and electrochemical impedance spectroscopy. As the Cr-content increases, the flat-band potential is negatively shifted. The impedance spectroscopy data show that Cr/Sn = 0.02 and 0.05 samples have lower charge transport resistance at the electrode, which can be explained by the rise of the conduction level due to the charge transfer from the more basic Cr(2)O(3) nanoparticles to SnO(2) nanoparticles. These observations corroborate with the trends of the short-circuit current and the open-circuit voltage of the DSSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp23545eDOI Listing

Publication Analysis

Top Keywords

modification performance
8
sno2 electrodes
8
cr/sn ratios
8
002 005
8
cr2o3 nanoparticles
8
sno2 nanoparticles
8
impedance spectroscopy
8
sno2
6
dsscs
5
effects cr2o3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!