Cultivation and identification of colon cancer stem cell-derived spheres from the Colo205 cell line.

Braz J Med Biol Res

Department of Gastroenterology and Institute of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Published: March 2012

AI Article Synopsis

  • - Our research created a method to grow spheres of cancer cells without serum, but we didn't know much about their characteristics or if they could form tumors until now.
  • - We found that these sphere cells showed high levels of cancer stem cell markers CD133 and CD44, indicating they could be key players in colorectal cancer.
  • - Additionally, the sphere cells were more tumorigenic than regular Colo205 cells, suggesting they have greater potential for cancer growth, which could lead to new treatment options and biomarkers for colorectal cancer.

Article Abstract

Our group established a method to culture spheres under serum-free culture condition. However, the biological characteristics and the tumorigenicity of spheres are unknown. Here, we demonstrate that sphere cells expressed high levels of the putative colorectal cancer stem cell markers CD133 and CD44. The CD133-positive rates were 13.27 ± 5.62, 52.71 ± 16.97 and 16.47 ± 2.45% in sphere cells, regular Colo205 cells and differentiated sphere cells, respectively, while the CD44-positive rates were 62.92 ± 8.38, 79.06 ± 12.10 and 47.80 ± 2.5%, respectively, and the CD133/CD44-double-positive rates were 10.77 ± 4.96, 46.89 ± 19.17 and 12.41 ± 2.27%, respectively (P < 0.05). Cancer sphere cells formed crypt-like structures in 3-D culture. Moreover, cells from cancer spheres exhibited more tumorigenicity than regular Colo205 cells in a xenograft assay. The cancer sphere cells displayed much higher oncogenicity than regular Colo205 cells to initiate neoplasms, as assayed by H&E staining, Musashi-1 staining and electron microscopy. Our findings indicated that the sphere cells were enriched with cancer stem cells (CSCs), and exhibited more proliferation capacity, more differentiation potential and especially more tumorigenicity than regular Colo205 cells in vitro and in vivo. Further isolation and characterization of these CSCs may provide new insights for novel therapeutic targets and prognostic markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854192PMC
http://dx.doi.org/10.1590/s0100-879x2012007500015DOI Listing

Publication Analysis

Top Keywords

sphere cells
24
regular colo205
16
colo205 cells
16
cancer stem
12
cells
12
cancer sphere
8
tumorigenicity regular
8
cancer
6
sphere
6
colo205
5

Similar Publications

Medulloblastoma, the most prevalent brain tumor among children, requires a comprehensive understanding of its cellular characteristics for effective research and treatment. In this study, we focused on DAOY, a permanent cell line of medulloblastoma, and investigated the unique properties of DAOY cells when cultured as floating multicellular aggregates called spheres, as opposed to adherent monolayers. Through our comprehensive analysis, we identified distinct characteristics associated with DAOY spheres.

View Article and Find Full Text PDF

Impact of Heterosigma akashiwo on the environmental behavior of microplastics: Aggregation, sinking, and resuspension dynamics.

J Hazard Mater

January 2025

Ecological Risk Research Department, KIOST, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Aggregation processes of microalgae have significant effects on the vertical distribution of microplastics (MPs) in the marine environment. This study explored how the harmful microalga Heterosigma akashiwo affects the aggregation and sinking characteristics of four types of MPs: low and high-density polyethylene (PE) spheres, and small and large polypropylene (PP) fragments. The aggregation of MPs was primarily driven by extracellular polymeric substances (EPS) rather than direct attachment to the cells, contributing to their sinking.

View Article and Find Full Text PDF

Mutations in the KRAS oncogene can mediate resistance to radiation. KRAS mutation (mut) driven tumors have been reported to express cancer stem cell (CSC)-like features and may harbor metabolic liabilities through which CSC-associated radioresistance can be overcome. We established a radiation/drug screening approach that relies on the growth of 3D spheres under anchorage-independent and lipid-limiting culture conditions, which promote stemness and lipogenesis.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.

View Article and Find Full Text PDF

Leveraging the nanotopography of filamentous fungal chitin-glucan nano/microfibrous spheres (FNS) coated with collagen (type I) for scaffolded fibroblast spheroids in regenerative medicine.

Tissue Cell

January 2025

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:

Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!