Background: Cellular glucose uptake can be enhanced by upregulating Ras signaling in either insulin-dependent or -independent manner. In presence of insulin and intact insulin signaling, Ras has a negligible role in glucose uptake. Conversely, when insulin signaling is impaired in obesity or diabetes, the insulin-independent Ras pathway may be valuable for enhancing glucose disposal. We previously reported that Ad36, a human adenovirus, enhances cellular glucose uptake by upregulating the Ras/Glut4 pathway. Here, we investigated if Ad36-upregulated Ras via the insulin-independent pathway, to enhance glucose uptake. Furthermore, uncontrolled upregulation of Ras is linked with oncogenic cell transformation, if the tumor-suppressor gene p53 is also downregulated. Hence, we determined if upregulation of Ras by Ad36 would induce oncogenic cell transformation. Finally, we determined the relevance of Ad36 to insulin resistance in humans.

Methods: Insulin receptor (IR) was knocked down with small interfering RNA in 3T3-L1 adipocytes, to determine if Ad36 increases the Ras/Glut4 pathway and glucose uptake without IR-signaling. Next, the effects of Ad36 on cell transformation and p53 abundance were determined. Finally, overweight or obese women were screened for seropositivity to Ad36, as an indicator of natural Ad36 infection. Associations of Ad36 infection with adiposity and C-reactive proteins (CRPs)-two key markers of insulin resistance, and with glucose disposal, were determined.

Results: Unaffected by IR knock-down, Ad36 significantly increased the Ras pathway, Glut4 translocation and glucose uptake in 3T3-L1 adipocytes. Despite Ras upregulation, Ad36 did not transform 3T3-L1 cells. This may be because Ad36 significantly increased p53 protein in 3T3-L1 cells or mice adipose tissue. Ad36 seropositivity was associated with greater adiposity and CRP levels, yet a significantly higher systemic glucose disposal rate.

Conclusions: Overall, the study offers Ras/Glut4 pathway as an alternate to enhance glucose disposal when insulin signaling is impaired, and, importantly, provides Ad36 as a tool to understand the modulation of that pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841456PMC
http://dx.doi.org/10.1038/ijo.2012.6DOI Listing

Publication Analysis

Top Keywords

glucose uptake
28
glucose disposal
16
ad36
13
cellular glucose
12
insulin signaling
12
ras/glut4 pathway
12
cell transformation
12
glucose
11
insulin
8
ras
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Imperial College London, London, United Kingdom; Division of Neurology, Department of Brain Sciences, Imperial College London, United Kingdom, London, London, United Kingdom.

Background: Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue licensed for the treatment of type 2 diabetes mellitus (T2DM). Preclinical evidence in transgenic models of Alzheimer's disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells.

Method: This is a multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild to moderate Alzheimer's dementia, conducted at several centres in the UK.

View Article and Find Full Text PDF

Background: Although cognitive decline is a trait related to aging, some individuals are resilient to the aging process, defined as SuperAgers. Studying the neural underpinnings of SuperAgers may improve the understanding of AD pathology. In this study, our aim was to analyze amyloid and neurodegeneration imaging biomarkers in SuperAgers.

View Article and Find Full Text PDF

Unlabelled: Globally, there is an increase in the prevalence of metabolic illnesses, including diabetes mellitus. However, current therapies for diabetes and other metabolic illnesses are not well understood. Pharmacological treatment of type 2 diabetes is challenging, moreover, the majority of antidiabetic medications are incompatible with individuals who have cardiac disease, renal illness, or liver damage.

View Article and Find Full Text PDF

Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) is closely associated with the development of vascular damage in the heart. In this study, the researchers aimed to determine whether Aerobic Training (AT) and Vitamin D supplementation (Vit D) could alleviate heart complications and vascular damage caused by diabetes. The effects of an eight-week AT program and Vit D on the expression of miR-1, IGF-1 genes, and VEGF-B in the cardiomyocytes of rats with T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!