Transforming Growth Factor Beta (TGF-β) is involved in regulating many biological processes and disease states. Cells secrete cytokine as a latent complex that must be activated for it to exert its biological functions. We previously discovered that the epithelial-restricted integrin α(v)β(6) activates TGF-β and that this process is important in a number of in vivo models of disease. Here, we show that agonists of G-protein coupled receptors (Sphingosine-1-Phosphate and Lysophosphatidic Acid) which are ligated under conditions of epithelial injury directly stimulate primary airway epithelial cells to activate latent TGF-β through a pathway that involves Rho Kinase, non-muscle myosin, the α(v)β(6) integrin, and the generation of mechanical tension. Interestingly, lung epithelial cells appear to exert force on latent TGF-β using sub-cortical actin/myosin rather than the stress fibers utilized by fibroblasts and other traditionally "contractile" cells. These findings extend recent evidence suggesting TGF-β can be activated by integrin-mediated mechanical force and suggest that this mechanism is important for an integrin (α(v)β(6)) and a cell type (epithelial cells) that have important roles in biologically relevant TGF-β activation in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294033PMC
http://dx.doi.org/10.1016/j.yexcr.2012.01.020DOI Listing

Publication Analysis

Top Keywords

epithelial cells
16
latent tgf-β
12
activate latent
8
integrin αvβ6
8
tgf-β
7
epithelial
5
cells
5
cells utilize
4
utilize cortical
4
cortical actin/myosin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!