Regulation of dopamine neurotransmission is essential for cognitive processes. In humans and rodents, the relationship between dopamine signaling and cognitive performance is described as a dose-dependent, inverted-U curve whereby excess or insufficiency of dopamine in prefrontal cortex has detrimental effects. Previous studies have indicated that prefrontal dopamine levels are associated with genetic variation in catechol-O-methyltransferase (COMT), a regulatory enzyme that controls dopamine availability. Furthermore, smokers who carry the high-activity COMT-Val allele are more prone to cognitive deficits and have an increased risk of smoking relapse. The present study employed transgenic mice expressing the human COMT-Val variant to determine the effects of the high-activity COMT allele on electrophysiological markers, including the P20, N40, and P80 components of the auditory event-related potential, as well as baseline and auditory event-related power and phase-synchrony in theta and gamma ranges. We also examined the effects of nicotine on these measures to investigate the potential effects of smoking on COMT-mediated electrophysiological activity. COMT-Val-tg mice displayed increased N40 latency and decreased P80 amplitude as well as reduced baseline theta and gamma power. Nicotine increased P20 and P80 amplitudes, decreased N40 amplitude, increased P20 and N40 latencies, and reduced P80 latency. Nicotine also increased the event-related power and phase synchrony, yielding an increase in signal-to-noise ratio across theta and gamma ranges. COMT activity specifically alters long-latency components of the event-related response. Nicotine restored normal event-related activity among COMT-Val-tg mice, suggesting one mechanism through which nicotine may normalize cognitive function among people with the high-activity allele.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/a0027047 | DOI Listing |
Mol Psychiatry
April 2018
Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.
The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC.
View Article and Find Full Text PDFBehav Neurosci
April 2012
ranslational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, PA, USA.
Regulation of dopamine neurotransmission is essential for cognitive processes. In humans and rodents, the relationship between dopamine signaling and cognitive performance is described as a dose-dependent, inverted-U curve whereby excess or insufficiency of dopamine in prefrontal cortex has detrimental effects. Previous studies have indicated that prefrontal dopamine levels are associated with genetic variation in catechol-O-methyltransferase (COMT), a regulatory enzyme that controls dopamine availability.
View Article and Find Full Text PDFJ Neurosci
August 2008
Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
The COMT (catechol-O-methyltransferase) gene has been linked to a spectrum of human phenotypes, including cognition, anxiety, pain sensitivity and psychosis. Doubts about its clinical impact exist, however, because of the complexity of human COMT polymorphism and clinical variability. We generated transgenic mice overexpressing a human COMT-Val polymorphism (Val-tg), and compared them with mice containing a null COMT mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!