1. The organization of azimuthal sensitivity of units across the dorsoventral extent of primary auditory cortex (AI) was studied in electrode penetrations made along frequency-band strips of AI. Azimuthal sensitivity for each unit was represented by a mean azimuth function (MF) calculated from all azimuth functions obtained to characteristic frequency (CF) stimuli at intensities 20 dB or more greater than threshold. MFs were classified as contrafield, ipsi-field, central-field, omnidirectional, or multipeaked, according to the criteria established in the companion paper (Rajan et al. 1990). 2. The spatial distribution of three types of MFs was not random across frequency-band strips: for contra-field, ipsi-field, and central-field MFs there was a significant tendency for clustering of functions of the same type in sequentially encountered units. Occasionally, repeated clusters of a particular MF type could be found along a frequency-band strip. In contrast, the spatial distribution of omnidirectional MFs along frequency-band strips appeared to be random. 3. Apart from the clustering of MF types, there were also regions along a frequency-band strip in which there were rapid changes in the type of MF encountered in units isolated over short distances. Most often such changes took the form of irregular, rapid juxtapositions of MF types. Less frequently such changes appeared to show more systematic changes from one type of MF to another type. In contrast to these changes in azimuthal sensitivity seen in electrode penetrations oblique to the cortical surface, much less change in azimuthal sensitivity was seen in the form of azimuthal sensitivity displayed by successively isolated units in penetrations made normal to the cortical surface. 4. To determine whether some significant feature or features of azimuthal sensitivity shifted in a more continuous and/or systematic manner along frequency-band strips, azimuthal sensitivity was quantified in terms of the peak-response azimuth (PRA) of the MFs of successive units and of the azimuthal range over which the peaks occurred in the individual azimuth functions contributing to each MF (the peak-response range). In different experiments shifts in these measures of the peaks in successively isolated units along a frequency-band strip were found generally to fall into one of four categories: 1) shifts across the entire frontal hemifield; 2) clustering in the contralateral quadrant; 3) clustering in the ipsilateral quadrant; and 4) clustering about the midline. In two cases more than one of these four patterns were found along a frequency-band strip.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1990.64.3.888 | DOI Listing |
Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
Programmable metasurfaces (PMSs) exhibit great potentials in target detection techniques, because they can take actions to change channel propagation characteristics which introduces further degrees of freedom for system optimizations. However, responses of most traditional PMSs are sensitive to incident angles of impinging electromagnetic waves, resulting in a failure of angular estimation to dynamic targets coming from different directions. Herein, by proposing a fully resonant structure and introducing a mode-alignment technology, we report an isotropic angle-insensitive PMS whose phase response is stable with respect to different incident angles in both elevation- and azimuth-planes.
View Article and Find Full Text PDFNat Photonics
August 2024
Max-Born-Institut, Berlin, Germany.
The topological response of matter to electromagnetic fields is a highly demanded property in materials design and metrology due to its robustness against noise and decoherence, stimulating recent advances in ultrafast photonics. Embedding topological properties into the enantiosensitive optical response of chiral molecules could therefore enhance the efficiency and robustness of chiral optical discrimination. Here we achieve such a topological embedding by introducing the concept of chiral topological light-a light beam which displays chirality locally, with an azimuthal distribution of its handedness described globally by a topological charge.
View Article and Find Full Text PDFMicromachines (Basel)
September 2024
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
High-precision, ultra-thin angular detectable imaging upon a single pixel holds significant promise for light-field detection and reconstruction, thereby catalyzing advancements in machine vision and interaction technology. Traditional light-direction angle sensors relying on optical components like gratings and lenses face inherent constraints from diffraction limits in achieving device miniaturization. Recently, angle sensors via coupled double nanowires have demonstrated prowess in attaining high-precision angle perception of incident light at sub-wavelength device scales, which may herald a novel design paradigm for ultra-compact angle sensors.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
Chiral phases of matter, characterized by a definite handedness, abound in nature, ranging from the crystal structure of quartz to spiraling spin states in helical magnets. In 1T-TiSe_{2} a source of chirality has been proposed that stands apart from these classical examples as it arises from combined electronic charge and quantum orbital fluctuations. This may allow its chirality to be accessed and manipulated without imposing either structural or magnetic handedness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!