Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: A series of 43 curcumin diarylpentanoid analogues were synthesized and evaluated for their inhibitory effects on the chemiluminescence and chemotactic activity of phagocytes in vitro.
Methods: The effects of the compounds on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) were evaluated using a luminol-based chemiluminescence assay and their effect on chemotactic migration of PMNs was investigated using the Boyden chamber technique.
Key Findings: Compounds 6, 17, 25 and 30 exhibited significant inhibitory activity on the oxidative burst of PMNs. The presence of methoxy groups at positions 2 and 5, and methoxylation and fluorination at positions 4 and 2 of both phenyl rings, respectively, may contribute significantly to their reactive oxygen species inhibition activity. Compounds 7, 17, 18, 24 and 32 showed strong inhibition of the chemotaxis migration of PMNs. Chlorination at various positions of both phenyl rings of cyclohexanone diarylpentanoid resulted in compounds with potent inhibitory effects on PMN migration.
Conclusions: The results suggest that some of these diarylpentanoid analogues are able to modulate the innate immune response of phagocytes at different steps, emphasizing their potential as a source of new immunomodulatory agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.2042-7158.2011.01423.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!