Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The objective of this study was to develop a quantitative crystallinity analysis method for the bulk drug of E1010 ((+)-(4R,5S,6S)-6-[(R)-1-hydroxyethyl]-3-[(2S,4S)-2-[(R)-1-hydroxy-1-[(R)-pyrrolidin-3 -yl]methyl]pyrrolidin-4-yl]thio-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid monohydrochloride), a novel carbapenem antibiotic.
Methods: X-ray analyses, thermal analyses and hygroscopicity measurements were used to elucidate the crystal structure and the solid state properties. To develop a quantitative method for the crystallinity of E1010 bulk drug, the relationship between enthalpy change obtained by differential scanning calorimetry (DSC) and crystalline form ratio was investigated.
Key Findings: E1010 bulk drug was found to exist in a crystalline trihydrate formed in two layers, i.e. a layer of E1010 free form, and a layer consisting of chloride ions and water molecules. The thermal analysis showed an endothermic peak derived from dehydration with the loss of crystal lattices at around 100°C as an onset. The enthalpy change value for the endothermic peak correlated well with crystalline content in binary physical mixtures of the crystalline trihydrate and the amorphous form. In addition, for nine lots of the bulk drug, a positive correlation between the enthalpy change and chemical stability in the solid state was observed.
Conclusions: This quantitative analysis of crystallinity using DSC could be applicable for the quality control of the bulk drug to detect variability among manufacturing batches and to estimate the chemical stability of partially amorphous samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.2042-7158.2011.01419.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!