Four new alkylating N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates (1-4) with seven-base-pair (bp) recognition ability were synthesized. Evaluation of their DNA-alkylating activity clearly showed accurate alkylation at match site(s). The cytotoxicities of conjugates 1-4 were determined against six human cancer cell lines, and the effect of these conjugates on the expression levels of the whole human genome in A549 cells were also investigated. A few genes among the top 20 genes were commonly downregulated by each conjugate, which reflects their sequence specificity. Conversely, many of the top 10 genes were commonly upregulated, which may have been caused by alkylation damage to DNA. Moreover, the antitumor activities of the PI polyamide conjugates 2 and 3 were investigated using nude mice transplanted with DU145 or A549. The intravenous administration of each liposomal conjugate in water yielded tumor-suppressing effects specifically toward DU145 cells and not A549 cells, which was pertinent to cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm201225z | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
The separation of Li from Mg in salt-lake brines using nanofiltration (NF) has become the most popular solution to meet the rising demand for lithium, particularly driven by the extensive use of lithium-ion batteries. This study presents the fabrication of a uniquely designed polyamide (PA) thin-film nanocomposite (TFN) membranes with ultrahigh Li/Mg selectivity and enhanced water flux by covalently incorporating mixed ligands functionalized silica nanoparticles (F-SiONPs) into the selective PA layer and covalently bonding them to the membrane surface. In this strategy, bare silica nanoparticles (SiONPs) were functionalized with mixed superhydrophilic ligands, including primary amine and quaternary ammonium groups, resulting in a highly positive surface charge primarily from the quaternary ammonium groups and enabling covalent conjugation via amine groups.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, P. R. China.
Shape memory polyurethane (SMPU) with excellent mechanical properties holds significant application value in engineering. However, achieving high strength and toughness typically relies on hydrogen bonding for energy dissipation, which limits the application of such PUs due to their deformation temperature being below room temperature. Here, we introduce a rigid long-chain polyamide acid with a rich aromatic structure as a chain extender, combined with metal coordination, to develop a shape memory polyurethane with a phase transition temperature of 50 °C and outstanding mechanical performance.
View Article and Find Full Text PDFSmall
November 2024
Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
Covalent organic networks (CONs) are considered ideal for precise molecular separation compared with traditional polymer membranes because their pores have a sharp molecular weight cut-off and a robust structure. However, challenges remain with regard to tuning pores as a prerequisite for facile membrane fabrication to a defect-free layer. Herein, a highly conjugated amino-porphyrin is used and exploited its tunable stacking behavior to fabricate porphyrin-based polyamide CONs with ordered structures through interfacial polymerization with acyl chlorides.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan. Electronic address:
Nucleic Acids Res
October 2024
Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
Small molecules can inhibit cellular processes such as replication and transcription by binding to the promoter regions that are prone to form G-quadruplexes. However, since G-quadruplexes exist throughout the human genome, the G-quadruplex binders suffer from specificity issues. To tackle this problem, a G-quadruplex binder (Pyridostatin, or PDS) is conjugated with a ligand (Polyamide, or PA) that can specifically recognize DNA sequences flanking the G-quadruplex forming region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!