The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the "biological carbon pump." Herein, we present results from a 13-y (1992-2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15-August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m(-2)·d(-1) for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277559PMC
http://dx.doi.org/10.1073/pnas.1120312109DOI Listing

Publication Analysis

Top Keywords

deep sea
12
efficient carbon
8
carbon sequestration
8
north pacific
8
organic matter
8
particulate matter
8
carbon
6
predictable efficient
4
sequestration north
4
pacific ocean
4

Similar Publications

Attenuation of progressive surface gravity waves by floating spheres.

Sci Rep

January 2025

Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CD, Delft, The Netherlands.

Laboratory experiments were performed to investigate the attenuation of progressive deep-water waves by a mono-layer of loose- and close-packed floating spheres. We measured the decay distance of waves having different incident wave frequency and steepness. The attenuation of waves was strong if the surface concentration of particles was close-packed, with the decay distance being shorter for incident waves with higher frequency and steepness.

View Article and Find Full Text PDF

Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation.

View Article and Find Full Text PDF

Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea.

Environ Res

January 2025

Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China. Electronic address:

Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific.

View Article and Find Full Text PDF

Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon.

Mar Environ Res

January 2025

Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China; College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China.

The input of macroalgal biomass into the deep sea is a crucial process for macroalgal carbon sequestration, but this process may be affected by anoxia. We compared the breakdown of kelp biomass in both normoxic (>4 mg/L O) and anoxic (<2 mg/L O) environments. Following 240 days of decomposition experiment, complete degradation of the kelp biomass occurred in normoxic conditions, whereas under anoxic conditions, relatively 13.

View Article and Find Full Text PDF

Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!