The diverse effects of mechanical loading on active hair bundles.

Proc Natl Acad Sci U S A

Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065-6399, USA.

Published: February 2012

Hair cells in the auditory, vestibular, and lateral-line systems of vertebrates receive inputs through a remarkable variety of accessory structures that impose complex mechanical loads on the mechanoreceptive hair bundles. Although the physiological and morphological properties of the hair bundles in each organ are specialized for detecting the relevant inputs, we propose that the mechanical load on the bundles also adjusts their responsiveness to external signals. We use a parsimonious description of active hair-bundle motility to show how the mechanical environment can regulate a bundle's innate behavior and response to input. We find that an unloaded hair bundle can behave very differently from one subjected to a mechanical load. Depending on how it is loaded, a hair bundle can function as a switch, active oscillator, quiescent resonator, or low-pass filter. Moreover, a bundle displays a sharply tuned, nonlinear, and sensitive response for some loading conditions and an untuned or weakly tuned, linear, and insensitive response under other circumstances. Our simple characterization of active hair-bundle motility explains qualitatively most of the observed features of bundle motion from different organs and organisms. The predictions stemming from this description provide insight into the operation of hair bundles in a variety of contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277577PMC
http://dx.doi.org/10.1073/pnas.1120298109DOI Listing

Publication Analysis

Top Keywords

hair bundles
16
mechanical load
8
active hair-bundle
8
hair-bundle motility
8
hair bundle
8
hair
7
mechanical
5
bundles
5
diverse effects
4
effects mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!