Autophagy is a conserved mechanism responsible for the continuous clearance of unnecessary organelles or misfolded proteins in lysosomes. Three types of autophagy have been reported in the difference of substrate delivery to lysosome: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Among these types, CMA is a unique autophagy system that selectively degrades substrates detected by heat shock cognate protein 70 (HSC70). Recently, autophagic cell death has been reported to be involved in neuronal death following brain ischemia; however, the contribution of CMA to neuronal death/survival after ischemic stress has not been addressed. In the present study, we determined whether quantitative alterations in LAMP-2A, which is the key molecule in CMA, would modulate neuronal cell survival under hypoxic conditions. Incubation of Neuro2A cells in a hypoxic chamber (1% O(2), 5% CO(2)) increased the level of LAMP-2A and induced accumulation of LAMP-2A-positive lysosomes in the perinuclear area, which is a hallmark of CMA activation. The activation of CMA in response to hypoxia was also confirmed by the GAPDH-HaloTag CMA indicator system at the single cell level. Next, we asked whether CMA was involved in cell survival during hypoxia. Blocking LAMP-2A expression with siRNA increased the level of cleaved caspase-3 and the number of propidium iodide-positive cells after hypoxic stress regardless of whether macroautophagy could occur, whereas the administration of mycophenolic acid, a potent CMA activator, rescued hypoxia-mediated cell death. Finally, we asked whether CMA was activated in the neurons after middle cerebral artery occlusion in vivo. The expression of LAMP-2A was significantly increased in the ischemic hemisphere seven days after brain ischemia. These results indicate that CMA is activated during hypoxia and contributes to the survival of cells under these conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2012.01.020 | DOI Listing |
JCO Precis Oncol
January 2025
Department of Medicine, Massachusetts General Hospital, Boston, MA.
Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.
Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.
Blood
January 2025
State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.
Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.
View Article and Find Full Text PDFBlood
January 2025
The Christie NHS Foundation Trust, United Kingdom.
Follicular lymphoma is the most common subtype of indolent lymphoma. Despite multiple trials over the past decade showing improved progression-free survival with new first-line therapeutic strategies -such as anti-CD20 maintenance therapy and new glycoengineered anti-CD20 antibodies- no standardized approach has been widely adopted in routine clinical practice. Several factors may explain this, including the increased incidence of infectious adverse events associated with these therapies, particularly during the COVID-19 pandemic, and the lack of overall survival benefit despite long-term follow-up.
View Article and Find Full Text PDFBiol Reprod
January 2025
Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America.
The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!