Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clinical studies suggest that stress-related biobehavioral factors can accelerate the progression of hematopoietic cancers such as acute lymphoblastic leukemia (ALL), but it is unclear whether such effects are causal or what biological pathways mediate such effects. Given the network of sympathetic nervous system (SNS) fibers that innervates the bone marrow to regulate normal (non-leukemic) hematopoietic progenitor cells, we tested the possibility that stress-induced SNS signaling might also affect ALL progression. In an orthotopic mouse model, Nalm-6 human pre-B ALL cells were transduced with the luciferase gene for longitudinal bioluminescent imaging and injected i.v. into male SCID mice for bone marrow engraftment. Two weeks of daily restraint stress significantly enhanced ALL tumor burden and dissemination in comparison to controls, and this effect was blocked by the β-adrenergic antagonist, propranolol. Although Nalm-6 ALL cells expressed mRNA for β1- and β3-adrenergic receptors, they showed no evidence of cAMP signaling in response to norepinephrine, and norepinephrine failed to enhance Nalm-6 proliferation in vitro. These results show that chronic stress can accelerate the progression of human pre-B ALL tumor load via a β-adrenergic signaling pathway that likely involves indirect regulation of ALL biology via alterations in the function of other host cell types such as immune cells or the bone marrow microenvironment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322262 | PMC |
http://dx.doi.org/10.1016/j.bbi.2012.01.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!